Advertisement

Nitric Oxide and Hydrogen Peroxide in Plant Response to Biotic Stress

  • Ivna Štolfa ČamagajevacEmail author
  • Dubravka Špoljarić Maronić
  • Tanja Žuna Pfeiffer
  • Nikolina Bek
  • Zdenko Lončarić
Chapter

Abstract

NO and H2O2 act as key regulators in a broad range of physiological processes in algae and higher plants. A large amount of research highlights multiple roles for NO/H2O2 in plant defence. They function as protectants but also as signaling molecules that mediate various metabolic processes and activate further systematic plant defence reactions through the regulation of genes involved in pathogen defence. This chapter summarises the current knowledge on NO and H2O2 necessity in plant cell resistance response to biotic stressors.

Keywords

Reactive oxygen species Reactive nitrogen species Signal molecule Biotic stress Gene expression Crosstalk 

References

  1. Agostoni M, Montgomery BL (2014) Survival strategies in the aquatic and terrestrial world: the impact of second messengers on cyanobacterial processes. Life 4:745–769PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alamillo JM, Garcia-Olmedo F (2001) Effects of urate, a natural inhibitor of peroxynitrite-mediated toxicity, in the response of Arabidopsis thaliana to the bacterial pathogen Pseudomonas syringae. Plant J 125:529–540CrossRefGoogle Scholar
  3. An Z, Jing W, Liu Y, Zhang W (2008) Hydrogen peroxide generated by copper amine oxidase is involved in abscisic acid-induced stomatal closure in Vicia faba. J Exp Bot 59:815–825PubMedCrossRefGoogle Scholar
  4. Arasimowicz M, Floryszak-Wieczorek J (2007) Nitric oxide as a bioactive signalling molecule in plant stress responses. Plant Sci 172:876–887CrossRefGoogle Scholar
  5. Asai S, Ohta K, Yoshioka H (2008) MAPK signaling regulates nitric oxide and NADPH oxidase-dependent oxidative bursts in Nicotiana benthamiana. Plant Cell 20:390–1406CrossRefGoogle Scholar
  6. Astier J, Gross I, Durner J (2018a) Nitric oxide production in plants: an update. J Exp Bot 69:3401–3411PubMedGoogle Scholar
  7. Astier J, Jeandroz S, Wendehenne D (2018b) Nitric oxide synthase in plants: the surprise from algae. Plant Sci 268:64–66PubMedCrossRefGoogle Scholar
  8. Barrington DJ, Ghadouani A (2008) Application of hydrogen peroxide for the removal of toxic cyanobacteria and other phytoplankton from wastewater. Environ Sci Technol 42:8916–8921PubMedCrossRefGoogle Scholar
  9. Begara-Morales JC, Sánchez-Calvo B, Luque F, Leyva-Pérez MO, Leterrier M, Corpas FJ, Barroso JB (2014) Differential transcriptomic analysis by RNA-Seq of GSNO-responsive genes between Arabidopsis roots and leaves. Plant Cell Physiol 55:1080–1095PubMedCrossRefGoogle Scholar
  10. Begara-Morales JC, Sánchez-Calvo B, Chaki M, Mata-Pérez C, Valderrama RP, Adilla MN, López-Jaramillo J, Luque F, Corpas FJ, Barroso JB (2015) Differential molecular response of monodehydroascorbate reductase and glutathione reductase by nitration and S-nitrosylation. J Exp Bot 66:5983–5996PubMedPubMedCentralCrossRefGoogle Scholar
  11. Beligni MV, Lamattina L (2000) Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta 210:215–221PubMedCrossRefGoogle Scholar
  12. Bellin D, Asai S, Delledonne M, Yoshioka H (2013) Nitric oxide as a mediator for defense responses. Mol Plant Microb Interact 26:271–277CrossRefGoogle Scholar
  13. Benhar M, Forrester MT, Hess DT, Stamler JS (2008) Regulated protein denitrosylation by cytosolic and mitochondrial thioredoxins. Science 320:1050–1054PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bhattacharjee S (2005) Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transduction in plants. Curr Sci 89:1113–1121Google Scholar
  15. Bickerton P, Sello S, Brownlee C, Pittman JK, Wheeler GL (2016) Spatial and temporal specificity of Ca2+ signalling in Chlamydomonas reinhardtii in response to osmotic stress. New Phytol 212:920–933PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bieker S, Riester L, Stahl M, Franzaring J, Zentgraf U (2012) Senescence-specific alteration of hydrogen peroxide levels in Arabidopsis thaliana and oilseed rape spring variety Brassica napus L. cv. Mozart. J Integr Plant Biol 54:540–554PubMedCrossRefGoogle Scholar
  17. Bienert GP, Schjoerring JK, Jahn TP (2006) Membrane transport of hydrogen peroxide. Biochim Biophys Acta 1758:994–1003PubMedCrossRefGoogle Scholar
  18. Bolwell GP (1999) Role of active oxygen species and NO in plant defence responses. Curr Opin Plant Biol 2:287–294PubMedCrossRefPubMedCentralGoogle Scholar
  19. Boscari A, Del Giudice J, Ferrarini A, Venturini L, Zaffini AL, Delledonne M, Puppo A (2013) Expression dynamics of the Medicago truncatula transcriptome during the symbiotic interaction with Sinorhizobium meliloti: which role for nitric oxide? Plant Physiol 161:425–439PubMedCrossRefPubMedCentralGoogle Scholar
  20. Box A, Sureda A, Terrados J, Pons A, Deudero S (2008) Antioxidant response and caulerpenyne production of the alien Caulerpa taxifolia (Vahl) epiphytized by the invasive algae Lophocladia lallemandii (Montagne). J Exp Mar Biol Ecol 364:24–28CrossRefGoogle Scholar
  21. Çakır B, Kılıçkaya O (2015) Mitogen-activated protein kinase cascades in Vitis vinifera. Front Plant Sci 6:556PubMedPubMedCentralCrossRefGoogle Scholar
  22. Camejo D, Ortiz-Espin A, Lazaro JJ, Romero-Puertas MC, Lazaro-Payo A, Sevilla F, Jiménez A (2015) Functional and structural changes in plant mitochondrial PrxII F caused by NO. J Protom 119:112–125CrossRefGoogle Scholar
  23. Cevahir G, Aytamka E, Erol Ç (2007) The role of nitric oxide in plants. Biotechnol Biotechnol Equip 21:13–17CrossRefGoogle Scholar
  24. Chardin C, Schenk ST, Hirt H, Colcombet J, Krapp A (2017) Review: Mitogen-activated protein kinases in nutritional signaling in Arabidopsis. Plant Sci 260:101–108PubMedCrossRefGoogle Scholar
  25. Chen T, Fluhr R (2018) Singlet oxygen plays an essential role in the root’s response to osmotic stress. Plant Physiol 177:1717–1727PubMedPubMedCentralGoogle Scholar
  26. Chen L, Zhang L, Yu D (2010) Wounding-induced WRKY8 is involved in basal defense in Arabidopsis. Mol Plant Microb Int 23:558–565CrossRefGoogle Scholar
  27. Chung CC, Hwang SPL, Chang J (2008) Nitric oxide as a signaling factor to upregulate the death-specific protein in a marine diatom, Skeletonema costatum, during blockage of electron flow in photosynthesis. Appl Environ Microbiol 74:6521–6527PubMedPubMedCentralCrossRefGoogle Scholar
  28. Cona A, Rea G, Botta M, Corelli F, Federico R, Angelini R (2006) Flavin-containing polyamine oxidase is a hydrogen peroxide source in the oxidative response to the protein phosphatase inhibitor cantharidin in Zea mays L. J Exp Bot 57:2277–2289PubMedCrossRefGoogle Scholar
  29. Corpas FJ, Barroso JB (2013) Nitro-oxidative stress vs oxidative or nitrosative stress in higher plants. New Phytol 199:633–635PubMedCrossRefGoogle Scholar
  30. Corpas FJ, Barroso JB (2014) Peroxisomal plant nitric oxide synthase (NOS) protein is imported by peroxisomal targeting signal type 2 (PTS2) in a process that depends on the cytosolic receptor PEX7 and calmodulin. FEBS Lett 588:2049–2054PubMedCrossRefGoogle Scholar
  31. Corpas FJ, Barroso JB (2015) Functions of nitric oxide (NO) in roots during development and under adverse stress conditions. Plants 4:240–252PubMedPubMedCentralCrossRefGoogle Scholar
  32. Corpas FJ, Palma JM (2018) Assessing nitric oxide (NO) in higher plants: an outline. Nitrogen 1:12–20CrossRefGoogle Scholar
  33. Corpas FJ, Carreras A, Valderrama R, Chaki M, Palma JM, del Río LA, Barroso JB (2007) Reactive nitrogen species and nitrosative stress in plants. Plant Stress 1:37–41Google Scholar
  34. Cuypers A, Hendrix S, Amaral dos Reis R, De Smet S, Deckers J, Gielen H, Jozefczak M, Loix C, Vercampt H, Vangronsveld J, Keunen E (2016) Hydrogen peroxide, signaling in disguise during metal phytotoxicity. Front Plant Sci 7:470PubMedPubMedCentralCrossRefGoogle Scholar
  35. Darehshouri A, Lütz-Meindl U (2010) H2O2 localization in the green alga Micrasterias after salt and osmotic stress by TEM-coupled electron energy loss spectroscopy. Protoplasma 239:49–56PubMedCrossRefGoogle Scholar
  36. de Pinto MC, Tomassi F, de Gara L (2002) Changes in the antioxidant systems as a part of the signaling pathway responsible for the programmed cell death activated by nitric oxide and reactive oxygen species in tobacco bright-yellow 2 cells. Plant Physiol 130:689–708CrossRefGoogle Scholar
  37. de Pinto MC, Locato V, Sgobba A, Romero-Puertas M d C, Gadaleta C, Delledonne M, De Gara L (2013) S-nitrosylation of ascorbate peroxidase is part of programmed cell death signaling in tobacco bright yellow-2 cells. Plant Physiol 163:1766–1775PubMedPubMedCentralCrossRefGoogle Scholar
  38. del Río LA (2015) ROS and RNS in plant physiology: an overview. J Exp Bot 66:2827–2837PubMedCrossRefGoogle Scholar
  39. Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588PubMedCrossRefGoogle Scholar
  40. Delledonne M, Zeier J, Marocco A, Lamb C (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci U S A 98:13454–13459PubMedPubMedCentralCrossRefGoogle Scholar
  41. Demidchik V, Maathuis F, Voitsekhovskaja O (2018) Unravelling the plant signalling machinery: An update on the cellular and genetic basis of plant signal transduction. Funct Plant Biol 45:1–8CrossRefGoogle Scholar
  42. Desikan R, Reynolds A, Hancock JT, Neill SJ (1998) Harpin and hydrogen peroxide both initiate programmed cell death but have differential effects on defence gene expression in Arabidopsis suspension cultures. Biochem J 330:115–120PubMedPubMedCentralCrossRefGoogle Scholar
  43. Dobrikova AG (2017) Signaling molecules in plants: exogenous application. Acta Sci Agri 1:38–41Google Scholar
  44. Domingos P, Prado AM, Wong A, Gehring C, Feijo JA (2015) Nitric oxide: A multitasked signaling gas in plants. Mol Plant 8:506–520PubMedCrossRefGoogle Scholar
  45. Dubovskaya LV, Bakakina YS, Kolesneva EV, Sodel DL, McAinsh MR, Hetherington AM, Volotovski ID (2011) cGMP-dependent ABA-induced stomatal closure in the ABA-insensitive Arabidopsis mutant abi1-1. New Phytol 191:57–69PubMedCrossRefGoogle Scholar
  46. Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Natl Acad Sci U S A 95:10328–10333PubMedPubMedCentralCrossRefGoogle Scholar
  47. Espunya MC, De MRG-CA, Martinez M (2012) S-nitrosoglutathione is a component of wound- and salicylic acid induced systemic responses in Arabidopsis thaliana. J Exp Bot 63:3219–3227PubMedPubMedCentralCrossRefGoogle Scholar
  48. Farnese FS, Menezes-Silva PE, Gusman GS, Oliveira JA (2016) When bad guys become good ones: the key role of reactive oxygen species and nitric oxide in the plant responses to abiotic Stress. Front Plant Sci 7:471PubMedPubMedCentralCrossRefGoogle Scholar
  49. Feechan A, Kwon E, Yun BW, Wang Y, Pallas JA, Loake GJ (2005) A central role for S-nitrosothiols in plant disease resistance. Proc Natl Acad Sci U S A 102:8054–8059PubMedPubMedCentralCrossRefGoogle Scholar
  50. Ferreira LC, Cataneo AC (2010) Nitric oxide in plants: A brief discussion on this multifunctional molecule. Sci Agric (Piracicaba Braz) 67:236–243CrossRefGoogle Scholar
  51. Foissner ID, Wendehenne D, Langebartels C, Durner J (2000) In vivo imaging of an elicitor-induced nitric oxide burst in tobacco. Plant J 23:817–824PubMedCrossRefPubMedCentralGoogle Scholar
  52. Foresi N, Correa-Aragunde N, Parisi G, Caló G, Salerno G, Lamattina L (2010) Characterization of a nitric oxide synthase from the plant kingdom: NO generation from the green alga Ostreococcus tauri is light irradiance and growth phase dependent. Plant Cell 22:3816–3830PubMedPubMedCentralCrossRefGoogle Scholar
  53. Frohlich A, Durner J (2011) The hunt for plant nitric oxide synthase (NOS): is one really needed? Plant Sci 181:401–404PubMedCrossRefGoogle Scholar
  54. Gadjev I, Stone JM, Gechev TS (2008) Programmed cell death in plants: new insights into redox regulation and the role of hydrogen peroxide. Int Rev Cell Mol Biol 270:87–144PubMedCrossRefGoogle Scholar
  55. Galatro A, Puntarulo S (2014) An update to the understanding of nitric oxide metabolism in plants. In: Khan MN, Mobin M, Mohammad F, Corpas JF (eds) Nitric oxide in plants: metabolism and role in stress physiology. Springer, Basel, pp 3–16CrossRefGoogle Scholar
  56. Ganini D, Hollnagel HC, Colepicolo P, Barros MP (2013) Hydrogen peroxide and nitric oxide trigger redox-related cyst formation in cultures of the dinoflagellate Lingulodinium polyedrum. Harmful Algae 27:121–129CrossRefGoogle Scholar
  57. García-Mata C, Lamattina L (2001) Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol 126:1196–1204PubMedCrossRefPubMedCentralGoogle Scholar
  58. Garcia-Olmedo F, Rodrigguez-Palenzulea P, Molina A, Alamillo JM, Lopez-Solanilla E, Berrocal-Lobo M, Poza-Carrion C (2001) Antibiotic activities of peptides, hydrogen peroxide and peroxynitrite in plant defence. FEBS Lett 489:219–222CrossRefGoogle Scholar
  59. Gehring C, Turek IS (2017) Cyclic nucleotide monophosphates and their cyclases in plant signaling. Front Plant Sci 8:1704PubMedPubMedCentralCrossRefGoogle Scholar
  60. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930PubMedCrossRefGoogle Scholar
  61. González A, de los Ángeles Cabrera M, Henríquez MJ, Contreras RA, Morales B, Moenne A (2012) Cross talk among calcium, hydrogen peroxide, and nitric oxide and activation of gene expression involving calmodulins and calcium-dependent protein kinases in Ulva compressa exposed to copper excess. Plant Physiol 158:1451–1462PubMedPubMedCentralCrossRefGoogle Scholar
  62. Górka B, Wieczorek PP (2017) Simultaneous determination of nine phytohormones in seaweed and algae extracts by HPLC-PDA. J Chromatogr B Analyt Technol Biomed Life Sci 1057:32–39PubMedCrossRefGoogle Scholar
  63. Gray SB, Brady SM (2016) Plant developmental responses to climate change. Dev Biol 419:64–77PubMedCrossRefGoogle Scholar
  64. Greenberg JT, Yao N (2004) The role and regulation of programmed cell death in plant-pathogen interactions. Cell Microbiol 6:201–211PubMedCrossRefGoogle Scholar
  65. Gupta KJ, Fernie AR, Kaiser WM, van Dongen JT (2011a) On the origins of nitric oxide. Trend Plant Sci 16:160–168CrossRefGoogle Scholar
  66. Gupta KJ, Igamberdiev AU, Manjunatha G, Segu S, Moran JF, Neelawarne B, Bauwe H, Kaiser WM (2011b) The emerging roles of nitric oxide (NO) in plant mitochondria. Plant Sci 181:520–526PubMedCrossRefGoogle Scholar
  67. Habibi G (2014) Hydrogen peroxide (H2O2) generation, scavenging and signaling in plants. In: Ahmad P (ed) Oxidative damage to plants: antioxidant networks and signaling. Academic, San Diego, pp 557–584CrossRefGoogle Scholar
  68. Hancock JT (2018) Hydrogen sulfide and environmental stresses. Environ Exp Bot.  https://doi.org/10.1016/j.envexpbot.2018.08.034
  69. Hao X, Yu K, Ma Q, Song X, Li H, Wang M (2011) Histochemical studies on the accumulation of H2O2 and hypersensitive cell death in the nonhost resistance of pepper against Blumeria graminis f. sp. tritici. Physiol Mol Plant Pathol 76:104–111CrossRefGoogle Scholar
  70. Hettenhausen C, Schuman MC, Wu J (2015) MAPK signalling: a key element in plant defense response to insects. Insect Sci 22:157–164PubMedCrossRefGoogle Scholar
  71. Holzmeister C, Gaupels F, Geerlof A, Sarioglu H, Sattler M, Durner J, Lindermayr C (2015) Differential inhibition of Arabidopsis superoxide dismutases by peroxynitrite-mediated tyrosine nitration. J Exp Bot 66:989–999PubMedCrossRefGoogle Scholar
  72. Hong JK, Kang SR, Kim YH, Yoon DJ, Kim DH, Kim HJ, Sung CH, Kang HS, Choi CW, Kim DH, Kim YS (2013) Hydrogen peroxide- and nitric oxide-mediated disease control of bacterial wilt in tomato plants. Plant Pathol J 29:386–396PubMedPubMedCentralCrossRefGoogle Scholar
  73. Hooijmaijers C, Rhee JY, Kwak KJ, Chung GC, Horie T, Katsuhara M, Kang H (2012) Hydrogen peroxide permeability of plasma membrane aquaporins of Arabidopsis thaliana. J Plant Res 125:147–153PubMedCrossRefGoogle Scholar
  74. Hu X, Bidney DL, Yalpani N, Duvick JP, Crasta O, Folkerts O, Lu G (2003) Overexpression of a gene encoding hydrogen peroxide-generating oxalate oxidase evokes defense responses in sunflower. Plant Physiol 133:170–181PubMedPubMedCentralCrossRefGoogle Scholar
  75. Hu X, Neill SJ, Tang Z, Cai W (2005) Nitric oxide mediates gravitropic bending in soybean roots. Plant Physiol 137:663–670PubMedPubMedCentralCrossRefGoogle Scholar
  76. Hu X, Yang J, Li C (2015) Transcriptomic response to nitric oxide treatment in Larix olgensis Henry. Int J Mol Sci 16:28582–28597PubMedPubMedCentralCrossRefGoogle Scholar
  77. Ichimura K, Shinozaki K, Tena G, Sheen J, Henry Y, Champion A, Kreis M, Zhang S, Hirt H, Wilson C, Heberle-Bors E, Ellis BE, Morris PC, Innes RW, Ecker JR, Scheel D, Klessig DF, Machida Y, Mundy J, Ohashi Y, Walker JC (2002) Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trend Plant Sci 27:301–308Google Scholar
  78. Imran QM, Hussain A, Lee SU, Mun BG, Falak N, Loake GJ, Yun BW (2018) Transcriptome profile of NO-induced Arabidopsis transcription factor genes suggests their putative regulatory role in multiple biological processes. Sci Rep 8:771PubMedPubMedCentralCrossRefGoogle Scholar
  79. Ismail SZ, Khandaker MM, Mat N, Boyce AN (2015) Effects of hydrogen peroxide on growth, development and quality of fruits: a review. J Agron 14:331–336CrossRefGoogle Scholar
  80. Jacquard C, Mazeyrat-Gourbeyre F, Devaux P, Boutilier K, Baillieul F, Clément C (2009) Microspore embryogenesis in barley: anther pre-treatment stimulates plant defence gene expression. Planta 229:393–402PubMedCrossRefGoogle Scholar
  81. Jeandroz S, Wipf D, Stuehr DJ, Lamattina L, Melkonian M, Tian Z, Zhu Y, Carpenter EJ, Wong GKS, Wendehenne D (2016) Occurrence, structure, and evolution of nitric oxide synthase–like proteins in the plant kingdom. Sci Signal 9:re2PubMedCrossRefPubMedCentralGoogle Scholar
  82. Kaurilind E, Xu E, Brosché M (2015) A genetic framework for H2O2 induced cell death in Arabidopsis thaliana. BMC Genom 16:837CrossRefGoogle Scholar
  83. Keshavarz-Tohid V, Taheri P, Taghavi SM, Tarighi S (2016) The role of nitric oxide in basal and induced resistance in relation with hydrogen peroxide and antioxidant enzymes. J Plant Physiol 199:29–38PubMedCrossRefGoogle Scholar
  84. Kneeshaw S, Gelineau S, Tada Y, Loake GJ, Spoel SH (2014) Selective protein denitrosylation activity of thioredoxin-h5 modulates plant immunity. Mol Cell 56:153–162PubMedCrossRefGoogle Scholar
  85. Kovacs I, Durner J, Lindermayr C (2015) Crosstalk between nitric oxide and glutathione is required for NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1)-dependent defense signaling in Arabidopsis thaliana. New Phytol 208:860–872PubMedCrossRefGoogle Scholar
  86. Krasylenko YA, Yemets AI, Blume YB (2017) Cell mechanisms of nitric oxide signaling in plants under abiotic stress conditions. In: Pandey G (ed) Mechanism of plant hormone signaling under stress. Wiley, Hoboken, NJGoogle Scholar
  87. Kumar A, Castellano I, Patti FP, Palumbo A, Buia MC (2015) Nitric oxide in marine photosynthetic organisms. Nitric Oxide 47:34–39PubMedCrossRefGoogle Scholar
  88. Kuźniak E, Urbanek H (2000) The involvement of hydrogen peroxide in plant responses to stresses. Acta Physiol Plant 22:195–203CrossRefGoogle Scholar
  89. Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Ann Rev Plant Physiol Plant Mol Biol 48:251–275CrossRefGoogle Scholar
  90. Lebel E, Heifetz P, Thorne L, Uknes S, Ryals J, Ward E (1998) Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. Plant J 16:223–233PubMedCrossRefGoogle Scholar
  91. Leitner M, Vandelle E, Gaupels F, Bellin D, Delledonne M (2009) NO signals in the haze: nitric oxide signalling in plant defence. Curr Opin Plant Biol 12:451–458PubMedCrossRefGoogle Scholar
  92. Li SW, Xue L (2010) The interaction between H2O2 and NO, Ca2+, cGMP, and MAPKs during adventitious rooting in mung bean seedlings. In Vitro Cell Dev Biol Plant 46:142–148CrossRefGoogle Scholar
  93. Li SW, Xue L, Xu S, Feng H, An L (2007) Hydrogen peroxide involvement in formation and development of adventitious roots in cucumber. Plant Growth Regul 52:173–180CrossRefGoogle Scholar
  94. Li Q, Wang YJ, Liu CK, Pei ZM, Shi WL (2017) The crosstalk between ABA, nitric oxide, hydrogen peroxide, and calcium in stomatal closing of Arabidopsis thaliana. Biologia 72:1140–1146Google Scholar
  95. Liao YWK, Sun ZH, Zhou YH, Shi K, Li X, Zhang GQ, Xia XJ, Chen ZX, Yu JQ (2013) The role of hydrogen peroxide and nitric oxide in the induction of plant-encoded RNA-dependent RNA polymerase 1 in the basal defense against Tobacco Mosaic Virus. PLoS One 8:e76090PubMedPubMedCentralCrossRefGoogle Scholar
  96. Lindermayr C, Sell S, Muller B, Leister D, Durner J (2010) Redox regulation of the NPR1-TGA1 system of Arabidopsis thaliana by nitric oxide. Plant Cell 22:2894–2907PubMedPubMedCentralCrossRefGoogle Scholar
  97. Liu L (2001) A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature 410:490–494PubMedCrossRefGoogle Scholar
  98. Liu B, Wang H, Ma Z, Gai X, Sun Y, He S, Liu X, Wang Y, Xuan Y, Gao Z (2018) Transcriptomic evidence for involvement of reactive oxygen species in Rhizoctonia solani AG1 IA sclerotia maturation. Peer J 6:e5103PubMedCrossRefGoogle Scholar
  99. Lozano-Juste J, León J (2011) Nitric oxide regulates DELLA content and PIF expression to promote photomorphogenesis in Arabidopsis. Plant Physiol 156:1410–1423PubMedPubMedCentralCrossRefGoogle Scholar
  100. Maffei ME, Mithöfer A, Arimura G, Uchtenhagen H, Bossi S, Bertea CM, Starvaggi Cucuzza L, Novero M, Volpe V, Quadro S, Boland W (2006) Effects of feeding Spodoptera littoralis on lima bean leaves. III. Membrane depolarization and involvement of hydrogen peroxide. Plant Physiol 140:1022–1035PubMedPubMedCentralCrossRefGoogle Scholar
  101. Malik SI, Hussain A, Yun BW, Spoel SH, Loake GJ (2011) GSNOR-mediated de-nitrosylation in the plant defence response. Plant Sci 181:540–544PubMedCrossRefGoogle Scholar
  102. Mallick N, Mohn FH (2000) Reactive oxygen species: response of algal cells. J Plant Physiol 157:183–193CrossRefGoogle Scholar
  103. Mallick N, Mohn FH, Soeder CJ, Grobbelaar JU (2002) Ameliorative role of nitric oxide on H2O2 toxicity to a chlorophycean alga Scenedesmus obliquus. J Gen Appl Microbiol 48:1–7PubMedCrossRefGoogle Scholar
  104. Matilla-Vázquez MA, Matilla AJ (2014) Role of H2O2 as signaling molecule in plants. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, Heidelberg, pp 361–380Google Scholar
  105. McDowell RE, Amsler CD, Dickinson DA, McClintock JB, Baker BJ (2014) Reactive oxygen species and the Antarctic macroalgal wound response. J Phycol 50:71–80PubMedCrossRefGoogle Scholar
  106. Melo NKG, Bianchetti RE, Lira BS, Oliveir PMR, Zuccarelli R, Dias DLO, Demarco D, Peres LEP, Rossi M, Freschi L (2016) Nitric oxide, ethylene, and auxin cross talk mediates greening and plastid development in deetiolating tomato seedlings. Plant Physiol 170:2278–2294PubMedPubMedCentralCrossRefGoogle Scholar
  107. Misra AN, Misra M, Singh R (2011) Nitric oxide ameliorates stress responses in plants. Plant Soil Environ 57:95–100CrossRefGoogle Scholar
  108. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trend Plant Sci 7:405–410CrossRefGoogle Scholar
  109. Mittler R (2017) ROS are good. Trend Plant Sci 22:11–19CrossRefGoogle Scholar
  110. Mittler R, Berkowitz G (2001) Hydrogen peroxide, a messenger with too many roles? Redox Rep 6:69–72PubMedCrossRefGoogle Scholar
  111. Mohanta TK, Arora PK, Mohanta N, Parida P, Bae H (2015) Identification of new members of the MAPK gene family in plants shows diverse conserved domains and novel activation loop variants. BMC Genom 16:58CrossRefGoogle Scholar
  112. Molassiotis A, Fotopoulos V (2011) Oxidative and nitrosative signaling in plants two branches in the same tree? Plant Signal Behav 6:210–214PubMedPubMedCentralCrossRefGoogle Scholar
  113. Møller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52:561–591PubMedCrossRefGoogle Scholar
  114. Moni A, Islam MN, Uddin MJ (2018) Role of auxin and nitric oxide on growth and development of lateral root of plants: possible involvement of exogenously induced Phot1. J Adv Biotechnol Exp Ther 1:61–64CrossRefGoogle Scholar
  115. Mor A, Koh E, Weiner L, Rosenwasser S, Sibony-Benyamini H, Fluhr R (2014) Singlet oxygen signatures are detected independent of light or chloroplasts in response to multiple stresses. Plant Physiol 165:249–261PubMedPubMedCentralCrossRefGoogle Scholar
  116. Mostofa MG, Fujita M, Tran LSP (2015) Nitric oxide mediates hydrogen peroxide- and salicylic acid induced salt tolerance in rice (Oryza sativa L.) seedlings. Plant Growth Regul 77:265–277CrossRefGoogle Scholar
  117. Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935–944PubMedCrossRefGoogle Scholar
  118. Mulaudzi N, Ludidi O, Ruzvidzo M, Morse N, Hendricks E, Iwuoha C, Gehring C (2011) Identification of a novel Arabidopsis thaliana nitric oxide-binding molecule with guanylate cyclase activity in vitro. FEBS Lett 585:2693–2697PubMedCrossRefGoogle Scholar
  119. Mullineaux PM, Exposito-Rodriguez M, Laissue PP, Smirnoff N (2018) ROS-dependent signalling pathways in plants and algae exposed to high light: comparisons with other eukaryotes. Free Radic Biol Med 122:52–64PubMedCrossRefGoogle Scholar
  120. Mur LAJ, Mandon J, Persijn S, Cristescu SM, Moshkov IE, Novikova GV, Hall MA, Harren FJM, Hebelstrup KH, Gupta KJ (2013) Nitric oxide in plants: an assessment of the current state of knowledge. AoB Plant 5:pls052CrossRefGoogle Scholar
  121. Mydlarz LD, Jacobs RS (2004) Comparison of an inducible oxidative burst in freeliving and symbiotic dinoflagellates reveals properties of the pseudopterosins. Phytochemistry 65:3231–3241PubMedCrossRefPubMedCentralGoogle Scholar
  122. Nadarajah K, Sidek H (2010) The green MAPKS. Asian J Plant Sci 9:1–10CrossRefGoogle Scholar
  123. Nan W, Wang X, Yang L, Hu Y, Wei Y, Liang X, Mao L, Bi Y (2014) Cyclic GMP is involved in auxin signalling during Arabidopsis root growth and development. J Exp Bot 65:1571–1583PubMedPubMedCentralCrossRefGoogle Scholar
  124. Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot 53:1237–1247PubMedCrossRefGoogle Scholar
  125. Niu L, Liao W (2016) Hydrogen peroxide signaling in plant development and abiotic responses: crosstalk with nitric oxide and calcium. Front Plant Sci 7:230PubMedPubMedCentralGoogle Scholar
  126. Noronha-Dutra AA, Epperlein MM, Woolf N (1993) Reaction of nitric oxide with hydrogen peroxide to produce potentially cytotoxic singlet oxygen as a model for nitric oxide-mediated killing. FEBS Lett 321:59–62PubMedCrossRefGoogle Scholar
  127. Oliveira JTA, Barreto ALH, Vasconcelos IM, Eloy YRG, Gondim DMF, Fernandes CF, Freire-Filho FR (2014) Role of antioxidant enzymes, hydrogen peroxide and PR-proteins in the compatible and incompatible interactions of cowpea (Vigna unguiculata) genotypes with the fungus Colletotrichum gloeosporioides. J Plant Physiol Pathol 2:3Google Scholar
  128. Opdenakker K, Remans T, Vangronsveld J, Cuypers A (2012) Mitogenactivated protein (map) kinases in plant metal stress: regulation and responses in comparison to other biotic and abiotic stresses. Int J Mol Sci 13:7828–7853PubMedPubMedCentralCrossRefGoogle Scholar
  129. Orozco-Cárdenas ML, Ryan CA (2002) Nitric oxide negatively modulates wound signaling in tomato plants. Plant Physiol 130:487–493PubMedPubMedCentralCrossRefGoogle Scholar
  130. Parani M, Rudrabhatla S, Myers R, Weirich H, Smith B, Leaman DW, Goldman SL (2004) Microarray analysis of nitric oxide responsive transcripts in Arabidopsis. Plant Biotechnol J 2:359–366PubMedCrossRefGoogle Scholar
  131. París R, Vazquez MM, Graziano M, Terrile MC, Miller ND, Spalding EP, Otegui MS, Casalongué CA (2018) Distribution of endogenous NO regulates early gravitropic response and PIN2 localization in Arabidopsis roots. Front Plant Sci 9:495PubMedPubMedCentralCrossRefGoogle Scholar
  132. Pasqualini S, Meier S, Gehring C, Madeo L, Fornaciari M, Romano B, Ederli L (2009) Ozone and nitric oxide induce cGMP-dependent and independent transcription of defence genes in tobacco. New Phytol 181:860–870PubMedCrossRefGoogle Scholar
  133. Pasqualini S, Cresti M, Del Casino C, Faleri C, Frenguelli G, Tedeschini E, Ederli L (2015) Roles for NO and ROS signalling in pollen germination and pollen-tube elongation in Cupressus arizonica. Biol Plant 59:735–744CrossRefGoogle Scholar
  134. Peleg-Grossman S, Melamed-Book N, Cohen G, Levine A (2010) Cytoplasmic H2O2 prevents translocation of NPR1 to the nucleus and inhibits the induction of PR genes in Arabidopsis. Plant Signal Behav 5:1401–1406PubMedPubMedCentralCrossRefGoogle Scholar
  135. Perl-Treves R, Perl A (2002) Oxidative stress: an introduction. In: Inze D, Montago M (eds) Oxidative stress in plants. Taylor and Francis, New York, NY, pp 1–32Google Scholar
  136. Pokora W, Aksmann A, Baścik-Remisiewicz A, Dettlaff-Pokora A, Rykaczewski M, Gappa M, Tukaj Z (2017) Changes in nitric oxide/hydrogen peroxide content and cell cycle progression: study with synchronized cultures of green alga Chlamydomonas reinhardtii. J Plant Physiol 208:84–93PubMedCrossRefGoogle Scholar
  137. Polverari A, Molesini B, Pezzotti M, Buonaurio R, Marte M, Delledonne M (2003) Nitric oxide-mediated transcriptional changes in Arabidopsis thaliana. Mol Plant Mic Int 16:1094–1105CrossRefGoogle Scholar
  138. Potin P (2008) Oxidative burst and related responses in biotic interactions of algae. In: Amsler CD (ed) Algal chemical ecology. Springer, HeidelbergGoogle Scholar
  139. Prado AM, Marshall Porterfield D, Feijó JA (2004) Nitric oxide is involved in growth regulation and re-orientation of pollen tubes. Development 131:2707–2714PubMedCrossRefGoogle Scholar
  140. Prasad A, Kumar A, Matsuoka R, Takahashi A, Fujii R, Sugiura Y, Kikuchi H, Aoyagi S, Aikawa T, Kondo T, Yuasa M, Pospíšil P, Kasai S (2017) Real-time monitoring of superoxide anion radical generation in response to wounding: electrochemical study. Peer J 5:e3050PubMedCrossRefGoogle Scholar
  141. Prasad A, Sedlářová M, Pospíšil P (2018) Singlet oxygen imaging using fuorescent probe singlet oxygen sensor green in photosynthetic organisms. Sci Rep 8:13685PubMedPubMedCentralCrossRefGoogle Scholar
  142. Prats E, Mur LAJ, Sanderson R, Carver TLW (2005) Nitric oxide contributes both to papilla-based resistance and the hypersensitive response in barley attacked by Blumeria graminis f. sp. hordei. Mol Plant Pathol 6:65–78PubMedCrossRefGoogle Scholar
  143. Procházková D, Haisel D, Pavlíková D (2014) Nitric oxide biosynthesis in plants – the short overview. Plant Soil Environ 60:129–134CrossRefGoogle Scholar
  144. Procházková D, Wilhelmová N, Pavlík M (2015) Reactive nitrogen species and nitric oxide. In: Khan MN, Mobin M, Mohammad F, Corpas FJ (eds) Nitric oxide action in abiotic stress responses in plants. Springer, Heidelberg, pp 3–19Google Scholar
  145. Qiao M, Sun J, Liu N, Sun T, Liu G, Han S, Hou C, Wang D (2015) Changes of nitric oxide and its relationship with H2O2 and Ca2+ in defense interactions between wheat and Puccinia triticina. PLoS One 10:e0132265PubMedPubMedCentralCrossRefGoogle Scholar
  146. Quan LJ, Zhang B, Shi WW, Li HY (2008) Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. J Integr Plant Biol 50:2–18PubMedCrossRefGoogle Scholar
  147. Radi R (2013) Peroxynitrite, a stealthy biological oxidant. J Biol Chem 288:26464–26472PubMedPubMedCentralCrossRefGoogle Scholar
  148. Rodrigues O, Reshetnyak G, Grondin A, SaijoY LN, Maurel C, Verdoucq L (2017) Aquaporins facilitate hydrogen peroxide entry into guard cells to mediate ABA- and pathogen-triggered stomatal closure. Proc Natl Acad Sci U S A 114:9200–9205PubMedPubMedCentralCrossRefGoogle Scholar
  149. Rodriguez MCS, Petersen M, Mundy J (2010) Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol 61:621–649PubMedCrossRefGoogle Scholar
  150. Romero-Puertas MC, Laxa M, Matte A, Zaninotto F, Finkemeier I, Jones AM, Perazzolli M, Vandelle E, Dietz KJ, Delledonne M (2007) S-nitrosylation of peroxiredoxin II E promotes peroxynitrite mediated tyrosine nitration. Plant Cell 19:4120–4130PubMedPubMedCentralCrossRefGoogle Scholar
  151. Rőszer T (2014) Biosynthesis of nitric oxide in plants. In: Khan MN, Mobin M, Mohammad F, Corpas JF (eds) Nitric oxide in plants: metabolism and role in stress physiology. Springer, Heidelberg, pp 17–33CrossRefGoogle Scholar
  152. Rustérucci C, Espunya MC, Díaz M, Chabannes M, Martínez MC (2007) S-nitrosoglutathione reductase affords protection against pathogens in Arabidopsis, both locally and systemically. Plant Physiol 143:1282–1292PubMedPubMedCentralCrossRefGoogle Scholar
  153. Sahay S, Gupta M (2017) An update on nitric oxide and its benign role in plant responses under metal stress. Nitric Oxide 67:39–52PubMedCrossRefGoogle Scholar
  154. Sakamoto M, Munemura I, Tomita R, Kobayashi K (2008) Involvement of hydrogen peroxide in leaf abscission signaling, revealed by analysis with an in vitro abscission system in Capsicum plants. Plant J 56:13–27PubMedCrossRefGoogle Scholar
  155. Salachna P, Zawadzińska A (2018) Effect of nitric oxide on growth, flowering and bulb yield of Eucomis autumnalis. Acta Hortic 1201:635–640CrossRefGoogle Scholar
  156. Santolini J, André F, Jeandroz S, Wendehenne D (2017) Nitric oxide synthase in plants: where do we stand? Nitric Oxide 63:30–38PubMedCrossRefGoogle Scholar
  157. Saxena I, Srikanth S, Chen Z (2016) Cross talk between H2O2 and interacting signal molecules under plant stress response. Front Plant Sci 7:570PubMedPubMedCentralCrossRefGoogle Scholar
  158. Senthil Kumar R, Shen CH, Wu PY, Suresh Kumar S, Sang Hua M, Yeh KW (2016) Nitric oxide participates in plant flowering repression by ascorbate. Sci Rep 6:35246PubMedPubMedCentralCrossRefGoogle Scholar
  159. Sheokand S, Kumari A (2015) Nitric oxide and abiotic stress-induced oxidative stress. In: Khan M, Mobin M, Mohammad F, Corpas F (eds) Nitric oxide action in abiotic stress responses in plants. Springer, HeidelbergGoogle Scholar
  160. Shetty NP, Jørgensen HJL, Jensen JD, Collinge DB, Shetty HS (2008) Roles of reactive oxygen species in interactions between plants and pathogens. Eur J Plant Pathol 121:267–280CrossRefGoogle Scholar
  161. Singh N, Bhatla SC (2018) Nitric oxide regulates lateral root formation through modulation of ACC oxidase activity in sunflower seedlings under salt stress. Plant Signal Behav 25:1–7Google Scholar
  162. Sinha AK, Jagg M, Raghuram B, Tuteja N (2011) Mitogen-activated protein kinase signalling in plants under abiotic stress. Plant Signal Behav 6:196–203PubMedPubMedCentralCrossRefGoogle Scholar
  163. Ślesak I, Libik M, Karpinska B, Karpinski S, Miszalski Z (2007) The role of hydrogen peroxide in regulation of plant metabolism and cellular signaling in response to environmental stresses. Acta Biochim Pol 54:39–50PubMedGoogle Scholar
  164. Srivastava AK, Penna S, Van Nguyen D, Tran LSP (2014) Multifaceted roles of aquaporins as molecular conduits in plant responses to abiotic stresses. Crit Rev Biotechnol 28:1–10CrossRefGoogle Scholar
  165. Stamler JS, Lamas S, Fang FC (2001) Nitrosylation: the prototypic redox-based signaling mechanism. Cell 106:675–683PubMedPubMedCentralCrossRefGoogle Scholar
  166. Štolfa CI, Špoljarić MD, Žuna PT, Lončarić Z (2016) Glutathione and related enzymes in response to abiotic stress. In: Gupta DK, Palma JM, Corpas FJ (eds) Redox state as a central regulator of plant cell stress responses. Springer, Heidelberg, pp 183–211CrossRefGoogle Scholar
  167. Štolfa ČI, Žuna PT, Špoljarić MD (2018) Abiotic stress response in plants: the relevance of tocopherols. In: Gupta DK, Palma JM, Corpas FJ (eds) Antioxidants and antioxidant enzymes in higher plants. Springer, Cham, pp 233–251CrossRefGoogle Scholar
  168. Sun H, Feng F, Liu J, Zhao Q (2018) Nitric oxide affects rice root growth by regulating auxin transport under nitrate supply. Front Plant Sci 9:659PubMedPubMedCentralCrossRefGoogle Scholar
  169. Szopińska D (2014) Effects of hydrogen peroxide treatment on the germination, vigour and health of Zinnia elegans seeds. Folia Hort 26:19–29CrossRefGoogle Scholar
  170. Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X (2008) Plant immunity requires conformational changes of NPR1 via S-nitrosylation and thioredoxins. Science 321:952–956PubMedCrossRefPubMedCentralGoogle Scholar
  171. Tanou G, Job C, Rajjou L, Arc E, Belghazi M, Diamantidis G, Molassiotis A, Job D (2009) Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. Plant J 60:795–804PubMedCrossRefPubMedCentralGoogle Scholar
  172. Tewari RK, Prommer J, Watanabe M (2013) Endogenous nitric oxide generation in protoplast chloroplasts. Plant Cell Rep 32:31–44PubMedCrossRefGoogle Scholar
  173. Thomas F, Cosse A, Goulitquer S, Raimund S, Morin P, Valero M, Leblanc C, Potin P (2011) Waterborne signaling primes the expression of elicitor-induced genes and buffers the oxidative responses in the brown alga Laminaria digitata. PLoS One 6:e21475PubMedPubMedCentralCrossRefGoogle Scholar
  174. Torres MA, Jones JD, Dangl JL (2005) Pathogen-induced, NADPH oxidase-derived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana. Nat Genet 37:1130–1134PubMedCrossRefGoogle Scholar
  175. Vargas-Hernández M, Torres-Pacheco I, Gautier F, Álvarez-Mayorga B, Cruz-Hernández A, García-Mier L, Jiménez-García SN, Ocampo-Velázquez RV, Feregrino-Perez AA, Guevara-Gonzalez RG (2017) Influence of hydrogen peroxide foliar applications on in vitro antimicrobial activity in Capsicum chinense Jacq. Plant Biosys 151:269–275CrossRefGoogle Scholar
  176. Varnova E, Inze D, van Breusegem F (2002) Signal transduction during oxidative stress. J Exp Bot 53:1227–1236CrossRefGoogle Scholar
  177. Vianello A, Macri FJ (1991) Generation of superoxide anion and hydrogen peroxide at the surface of plant cells. Bioenerg Biomemb 23:409–423CrossRefGoogle Scholar
  178. Voss I, Sunil B, Scheibe R, Raghavendra AS (2013) Emerging concept for the role of photorespiration as an important part of abiotic stress response. Plant Biol 5:713–722CrossRefGoogle Scholar
  179. Vranová E, Inzé D, Van Breusegem F (2002) Signal transduction during oxidative stress. J Exp Bot 53:1227–1236PubMedCrossRefGoogle Scholar
  180. Wang YQ, Feechan A, Yun BW, Shafiei R, Hofmann A, Taylor P, Xue P, Yang FQ, Xie ZS, Pallas JA, Chu CC, Loake GJ (2009) S-nitrosylation of AtSABP3 antagonizes the expression of plant immunity. J Biol Chem 284:2131–2137PubMedCrossRefGoogle Scholar
  181. Wang Y, Hao X, Lu Q, Wang L, Qian W, Li N, Ding C, Wang X, Yang Y (2018) Transcriptional analysis and histochemistry reveal that hypersensitive cell death and H2O2 have crucial roles in the resistance of tea plant (Camellia sinensis (L.) O. Kuntze) to anthracnose. Hortic Res 5:18PubMedPubMedCentralCrossRefGoogle Scholar
  182. Weisslocker-Schaetzel M, André F, Touazi N, Foresi N, Lembrouk M, Dorlet P, Frelet-Barrand A, Lamattina L, Santolini J (2017) The NOS-like protein from the microalgae Ostreococcus tauri is a genuine and ultrafast NO-producing enzyme. Plant Sci 265:100–111PubMedCrossRefGoogle Scholar
  183. Wink DA, Mitchell JB (1998) Chemical biology of nitric oxide: Insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med 25:434–456PubMedCrossRefGoogle Scholar
  184. Wojtaszek P (1997) Oxidative burst: an early plant response to pathogen infection. Biochem J 322:681–692PubMedPubMedCentralCrossRefGoogle Scholar
  185. Wojtyla L, Lechowska K, Kubala S, Garnczarsk M (2016) Different modes of hydrogen peroxide action during seed germination. Front Plant Sci 7:66PubMedPubMedCentralCrossRefGoogle Scholar
  186. Wu Y, Zhang D, Chu JY, Boyle P, Wang Y, Brindle ID, De Luca V, Després C (2012) The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Rep 8:639–647CrossRefGoogle Scholar
  187. Wünsche H, Baldwin IT, Wu J (2011) S-Nitrosoglutathione reductase (GSNOR) mediates the biosynthesis of jasmonic acid and ethylene induced by feeding of the insect herbivore Manduca sexta and is important for jasmonate-elicited responses in Nicotiana attenuata. J Exp Bot 62:4605–4616PubMedPubMedCentralCrossRefGoogle Scholar
  188. Yang H, Kim HJ, Chen H, Lu Y, Lu X, Wang C, Zhou B (2018) Reactive oxygen species and nitric oxide induce senescence of rudimentary leaves and the expression profiles of the related genes in Litchi chinensis. Hort Res 5:23CrossRefGoogle Scholar
  189. Yu M, Lamattina L, Spoe SH, Loake GJ (2014) Nitric oxide function in plant biology: a redox cue in deconvolution. New Phytol 202:1142–1156PubMedCrossRefGoogle Scholar
  190. Yun BW, Feechan A, Yin M, Saidi NB, Le Bihan T, Yu M, Moore JW, Kang JG, Kwon E, Spoel SH, Pallas JA, Loake GJ (2011) S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature 478:264–268PubMedCrossRefGoogle Scholar
  191. Zhang H (2016) Hydrogen sulfide in plant biology. In: Lamattina L, García-Mata C (eds) Gasotransmitters in plants. Signaling and communication in plants. Springer, ChamGoogle Scholar
  192. Zhang X, Zhang L, Dong F, Gao J, Galbraith DW, Song CP (2001) Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol 126:1438–1448PubMedPubMedCentralCrossRefGoogle Scholar
  193. Zhao FY, Hu F, Zhang SY, Wang K, Zhang CR, Liu T (2013) MAPKs regulate root growth by influencing auxin signaling and cell cycle-related gene expression in cadmium-stressed rice. Environ Sci Pollut Res 28:5449–5460CrossRefGoogle Scholar
  194. Zhou JM, Trifa Y, Silva H, Pontier D, Lam E, Shah J, Klessig DF (2000) NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid. Mol Plant Microbe 13:191–202CrossRefGoogle Scholar
  195. Zurbriggen MD, Carrillo N, Hajirezaei MR (2010) ROS signaling in the hypersensitive response: when, where and what for? Plant Signal Behav 5:393–396PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ivna Štolfa Čamagajevac
    • 1
    Email author
  • Dubravka Špoljarić Maronić
    • 1
  • Tanja Žuna Pfeiffer
    • 1
  • Nikolina Bek
    • 1
  • Zdenko Lončarić
    • 2
  1. 1.Department of BiologyJosip Juraj Strossmayer University of OsijekOsijekCroatia
  2. 2.Faculty of Agriculture in OsijekJosip Juraj Strossmayer University of OsijekOsijekCroatia

Personalised recommendations