Advertisement

Hydrogen Peroxide and Nitric Oxide Generation in Plant Cells: Overview and Queries

  • José M. PalmaEmail author
  • Dharmendra K. Gupta
  • Francisco J. Corpas
Chapter

Abstract

Hydrogen peroxide (H2O2) and nitric oxide (NO) are two key molecules representative of two families of related compounds designated as reactive oxygen and nitrogen species (ROS and RNS, respectively). Our present knowledge about where, when, and how these molecules are produced in a specific plant tissue either under physiological or stress conditions and how they interact support the relevant crosstalk between these molecules which in many cases are autoregulated throughout posttranslational modifications. Thus, either S-nitrosation or nitration of different enzymes of the ROS metabolism including superoxide-generating NADPH oxidase (NOX) or antioxidant enzymes such as catalase and superoxide dismutase (SOD) and components of the ascorbate-glutathione cycle may take place under diverse situations. However, H2O2 and NO may react among them giving rise to a more powerful toxic species, the hydroxyl radical (·OH), which may react with most biomolecules (nucleic acids, proteins, and lipids), leading to irreversible damages within cells. This chapter will provide a comprehensive and easy overview about H2O2 and NO production, on how these molecules are generated within different cell compartments, and about their metabolic interaction. A proposed model on how such interaction between H2O2 and NO may influence the organelles’ signaling network under normal physiological and stress conditions and/or developmental metabolic shifts is discussed.

Keywords

Chloroplast Hydrogen peroxide Hydroxyl radical Mitochondrion Nitric oxide Peroxisome Reactive oxygen species Reactive nitrogen species Signaling S-nitrosoglutathione S-nitrosylation 

Notes

Acknowledgments

This work has been supported by the ERDF-cofinanced grant AGL2015-65104-P from the Ministry of Economy and Competitiveness and Junta de Andalucía (group BIO-192), Spain.

References

  1. Agurla S, Gayatri G, Raghavendra AS (2018) Polyamines increase nitric oxide and reactive oxygen species in guard cells of Arabidopsis thaliana during stomatal closure. Protoplasma 255:153–162PubMedCrossRefPubMedCentralGoogle Scholar
  2. Alber NA, Sivanesan H, Vanlerberghe GC (2017) The occurrence and control of nitric oxide generation by the plant mitochondrial electron transport chain. Plant Cell Environ 40:1074–1085PubMedCrossRefPubMedCentralGoogle Scholar
  3. Asada K (1999) The water-cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639PubMedCrossRefPubMedCentralGoogle Scholar
  4. Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396PubMedPubMedCentralCrossRefGoogle Scholar
  5. Asada K, Kiso K, Yoshikawa K (1974) Univalent reduction of molecular oxygen by spinach chloroplasts on illumination. J Biol Chem 249:2175–2181PubMedPubMedCentralGoogle Scholar
  6. Astier J, Gross I, Durner J (2018) Nitric oxide production in plants: an update. J Exp Bot 69:3401–3411PubMedCrossRefGoogle Scholar
  7. Barroso JB, Corpas FJ, Carreras A, Sandalio LM, Valderrama R, Palma JM, Lupiáñez JA, del Río LA (1999) Localization of nitric-oxide synthase in plant peroxisomes. J Biol Chem 274:36729–36733PubMedCrossRefPubMedCentralGoogle Scholar
  8. Barroso JB, Valderrama R, Corpas FJ (2013) Immunolocalization of S-nitrosoglutathione, S-nitrosoglutathione reductase and tyrosine nitration in pea leaf organelles. Acta Physiol Plant 35:2635–2640CrossRefGoogle Scholar
  9. Begara-Morales JC, Sánchez-Calvo B, Chaki M, Mata-Pérez C, Valderrama R, Padilla MN, López-Jaramillo J, Luque F, Corpas FJ, Barroso JB (2015) Differential molecular response of monodehydroascorbate reductase and glutathione reductase by nitration and S-nitrosylation. J Exp Bot 66:5983–5996PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bethke PC, Badger MR, Jones RL (2004) Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell 16:332–341PubMedPubMedCentralCrossRefGoogle Scholar
  11. Blokhina O, Fagerstedt KV (2010) Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory systems. Physiol Plant 138:447–462PubMedCrossRefGoogle Scholar
  12. Boveris A, Cadenas E (1982) Production of superoxide radical and hydrogen peroxide in mitochondria. In: Oberley LW (ed) Superoxide dismutase, vol II. CRC Press, Boca Raton, FL, pp 15–30Google Scholar
  13. Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134:707–716PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bunkelmann JR, Trelease RN (1996) Ascorbate peroxidase. A prominent membrane protein in oilseed glyoxysomes. Plant Physiol 110:589–598PubMedPubMedCentralCrossRefGoogle Scholar
  15. Chaki M, Álvarez de Morales P, Ruiz C, Begara-Morales JC, Barroso JB, Corpas FJ, Palma JM (2015) Ripening of pepper (Capsicum annuum) fruit is characterized by an enhancement of protein tyrosine nitration. Ann Bot 116:637–647PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chamizo-Ampudia A, Sanz-Luque E, Llamas Á, Ocaña-Calahorro F, Mariscal V, Carreras A, Barroso JB, Galván A, Fernández E (2016) A dual system formed by the ARC and NR molybdoenzymes mediates nitrite-dependent NO production in Chlamydomonas. Plant Cell Environ 39:2097–2107PubMedCrossRefGoogle Scholar
  17. Chen ZH, Wang Y, Wang JW, Babla M, Zhao C, García-Mata C, Sani E, Differ C, Mak M, Hills A, Amtmann A, Blatt MR (2016) Nitrate reductase mutation alters potassium nutrition as well as nitric oxide-mediated control of guard cell ion channels in Arabidopsis. New Phytol 209:1456–1469PubMedCrossRefGoogle Scholar
  18. Chigri F, Flosdorff S, Pilz S, Kölle E, Dolze E, Gietl C, Vothknecht UC (2012) The Arabidopsis calmodulin-like proteins AtCML30 and AtCML3 are targeted to mitochondria and peroxisomes, respectively. Plant Mol Biol 78:211–222PubMedCrossRefGoogle Scholar
  19. Corpas FJ, Barroso JB (2014a) Peroxynitrite (ONOO) is endogenously produced in Arabidopsis peroxisomes and is overproduced under cadmium stress. Ann Bot 113:87–96PubMedCrossRefGoogle Scholar
  20. Corpas FJ, Barroso JB (2014b) Functional implications of peroxisomal nitric oxide (NO) in plants. Front Plant Sci 5:97PubMedPubMedCentralCrossRefGoogle Scholar
  21. Corpas FJ, Barroso JB (2017) Nitric oxide synthase-like activity in higher plants. Nitric Oxide 68:5–6PubMedCrossRefPubMedCentralGoogle Scholar
  22. Corpas FJ, Barroso JB (2018a) Calmodulin antagonist affects peroxisomal functionality by disrupting both peroxisomal Ca2+ and protein import. J Cell Sci 131:jcs.201467.CrossRefGoogle Scholar
  23. Corpas FJ, Barroso JB (2018b) Peroxisomal plant metabolism – an update on nitric oxide, Ca2+ and the NADPH recycling network. J Cell Sci 131:jcs202978.PubMedCrossRefGoogle Scholar
  24. Corpas FJ, Palma JM (2018) Assessing nitric oxide (NO) in higher plants: an outline. Nitrogen 1:12–20CrossRefGoogle Scholar
  25. Corpas FJ, Trelease RN (1998) Differential expression of ascorbate peroxidase and a putative molecular chaperone in the boundary membrane of differentiating cucumber seedling peroxisomes. J Plant Physiol 153:332–338CrossRefGoogle Scholar
  26. Corpas FJ, Bunkelmann J, Trelease RN (1994) Identification and immunochemical characterization of a family of peroxisome membrane proteins (PMPs) in oilseed glyoxysomes. Eur J Cell Biol 65:280–290PubMedGoogle Scholar
  27. Corpas FJ, Barroso JB, Carreras A, Quirós M, León AM, Romero-Puertas MC, Esteban FJ, Valderrama R, Palma JM, Sandalio LM, Gómez M, del Río LA (2004) Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants. Plant Physiol 136:2722–2733PubMedPubMedCentralCrossRefGoogle Scholar
  28. Corpas FJ, Hayashi M, Mano S, Nishimura M, Barroso JB (2009) Peroxisomes are required for in vivo nitric oxide accumulation in the cytosol following salinity stress of Arabidopsis plants. Plant Physiol 151:2083–2094PubMedPubMedCentralCrossRefGoogle Scholar
  29. Corpas FJ, Gupta DK, Palma JM (2015) Production sites of reactive oxygen species (ROS) in organelles from plant cells. In: Gupta DK, Palma JM, Corpas FJ (eds) Reactive oxygen species and oxidative damage in plants under stress. Springer, Cham, pp 1–22Google Scholar
  30. Corpas FJ, Barroso JB, Palma JM, Rodríguez-Ruiz M (2017) Plant peroxisomes: a nitro-oxidative cocktail. Redox Biol 11:535–542PubMedPubMedCentralCrossRefGoogle Scholar
  31. Corpas FJ, Freschi L, Marta Rodríguez-Ruiz M, Mioto PT, González-Gordo S, Palma JM (2018) Nitro-oxidative metabolism during fruit ripening. J Exp Bot 69:3449–3463PubMedCrossRefPubMedCentralGoogle Scholar
  32. Corpas FJ, del Río LA, Palma JM (2019) Plant peroxisomes are in the crossroad of NO and H2O2 metabolism. J Integr Plant Biol.  https://doi.org/10.1111/jipb.1772
  33. Costa A, Drago I, Behera S, Zottini M, Pizzo P, Schroeder JI, Pozzan T, Lo Schiavo F (2010) H2O2 in plant peroxisomes: an in vivo analysis uncovers a Ca2+-dependent scavenging system. Plant J 62:760–772PubMedPubMedCentralCrossRefGoogle Scholar
  34. De Duve C, Baudhuin P (1966) Peroxisomes (microbodies and related particles). Physiol Rev 46:323–357PubMedCrossRefPubMedCentralGoogle Scholar
  35. del Río LA (2011) Peroxisomes as a cellular source of reactive nitrogen species signal molecules. Arch Biochem Biophys 506:1–11PubMedCrossRefPubMedCentralGoogle Scholar
  36. del Río LA (2015) ROS and RNS in plant physiology: an overview. J Exp Bot 66:2827–2837PubMedCrossRefGoogle Scholar
  37. del Río LA, Corpas FJ, López-Huertas E, Palma JM (2018) Plant superoxide dismutases: function under abiotic stress conditions. In: Gupta DK, Palma JM, Corpas FJ (eds) Antioxidants and antioxidant enzymes in higher plants. Springer, Cham, pp 1–26Google Scholar
  38. Foresi N, Correa-Aragunde N, Parisi G, Caló G, Salerno G, Lamattina L (2010) Characterization of a nitric oxide synthase from the plant kingdom: NO generation from the green alga Ostreococcus tauri is light irradiance and growth phase dependent. Plant Cell 22:3816–3830PubMedPubMedCentralCrossRefGoogle Scholar
  39. Foyer CH, Noctor G (2003) Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364CrossRefGoogle Scholar
  40. Galatro A, Puntarulo S (2016) Measurement of nitric Oxide (NO) generation rate by chloroplasts employing electron spin resonance (ESR). Methods Mol Biol 1424:103–112PubMedCrossRefGoogle Scholar
  41. Galatro A, Puntarulo S, Guiamet JJ, Simontacchi M (2013) Chloroplast functionality has a positive effect on nitric oxide level in soybean cotyledons. Plant Physiol Biochem 66:26–33PubMedCrossRefPubMedCentralGoogle Scholar
  42. Gray D, Lissi E, Heicklen J (1972) The reaction of hydrogen peroxide with nitrogen dioxide and nitric oxide. J Phys Chem 76:1919–1924CrossRefGoogle Scholar
  43. Gupta DK, Palma JM, Corpas FJ (2018a) Generation and scavenging of reactive oxygen species (ROS) in plant cells: an overview. In: Gupta DK, Palma JM, Corpas FJ (eds) Antioxidants and antioxidant enzymes in higher plants. Springer, ChamGoogle Scholar
  44. Gupta KJ, Kumari A, Florez-Sarasa I, Fernie AR, Igamberdiev AU (2018b) Interaction of nitric oxide with the components of the plant mitochondrial electron transport chain. J Exp Bot 69:3413–3424PubMedCrossRefPubMedCentralGoogle Scholar
  45. Halliwell B, Gutteridge JMC (2015) Free radicals in biology and medicine. Fifth Edition. Oxford University Press, Oxford, UKGoogle Scholar
  46. Handy DE, Lubos E, Yang Y, Galbraith JD, Kelly N, Zhang YY, Leopold JA, Loscalzo J (2009) Glutathione peroxidase-1 regulates mitochondrial function to modulate redox-dependent cellular responses. J Biol Chem 284:11913–11921PubMedPubMedCentralCrossRefGoogle Scholar
  47. Huang S, Van Aken O, Schwarzlander M, Belt K, Millar AH (2016) The roles of mitochondrial reactive oxygen species in cellular signaling and stress response in plants. Plant Physiol 171:1551–1559PubMedPubMedCentralCrossRefGoogle Scholar
  48. Igamberdiev AU, Ratcliffe RG, Gupta KJ (2014) Plant mitochondria: source and target for nitric oxide. Mitochondrion 19(Pt B):329–333PubMedCrossRefPubMedCentralGoogle Scholar
  49. Jasid S, Simontacchi M, Bartoli CG, Puntarulo S (2006) Chloroplasts as a nitric oxide cellular source. Effect of reactive nitrogen species on chloroplastic lipids and proteins. Plant Physiol 142:1246–1255PubMedPubMedCentralCrossRefGoogle Scholar
  50. Jeandroz S, Wipf D, Stuehr DJ, Lamattina L, Melkonian M, Tian Z, Zhu Y, Carpenter EJ, Wong GK, Wendehenne D (2016) Occurrence, structure, and evolution of nitric oxide synthase-like proteins in the plant kingdom. Sci Signal 9(417):re2PubMedCrossRefPubMedCentralGoogle Scholar
  51. Jensen PK (1966a) Antimycin-insensitive oxidation of succinate and reduced nicotinamide-adenine dinucleotide in electron-transport particles. I. pH dependency and hydrogen peroxide formation. Biochim Biophys Acta 122:157–166PubMedCrossRefGoogle Scholar
  52. Jensen PK (1966b) Antimycin-insensitive oxidation of succinate and reduced nicotinamide-adenine dinucleotide in electron-transport particles. II. Steroid effects. Biochim Biophys Acta 122:167–174PubMedCrossRefGoogle Scholar
  53. Jiménez A, Hernández JA, del Río LA, Sevilla F (1997) Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114:275–284PubMedPubMedCentralCrossRefGoogle Scholar
  54. Lindermayr C (2017) Crosstalk between reactive oxygen species and nitric oxide in plants: key role of S-nitrosoglutathione reductase. Free Radic Biol Med 122:110–115PubMedCrossRefGoogle Scholar
  55. Loschen G, Azzi A, Richter C, Flohé L (1974) Superoxide radicals as precursors of mitochondrial hydrogen peroxide. FEBS Lett 42:68–72PubMedCrossRefGoogle Scholar
  56. Loughran PA, Stolz DB, Vodovotz Y, Watkins SC, Simmons RL, Billiar TR (2005) Monomeric inducible nitric oxide synthase localizes to peroxisomes in hepatocytes. Proc Natl Acad Sci U S A 102:13837–13842PubMedPubMedCentralCrossRefGoogle Scholar
  57. Mano J, Endo T, Miyake C (2016) How do photosynthetic organisms manage light stress? A tribute to the late Professor Kozi Asada. Plant Cell Physiol 57:1351–1353PubMedCrossRefGoogle Scholar
  58. Maruta T, Sawa Y, Shigeoka S, Ishikawa T (2016) Diversity and evolution of ascorbate peroxidase functions in chloroplasts: more than just a classical antioxidant enzyme? Plant Cell Physiol 57:1377–1386PubMedGoogle Scholar
  59. Mehler A (1951) Studies on reactions of illuminated chloroplasts: I. Mechanism of the reduction of oxygen and other hill reagents. Arch Biochem Biophys 33:65–77PubMedCrossRefGoogle Scholar
  60. Mittova V, Volokita M, Guy M (2015) Antioxidative systems and stress tolerance: insights from wild and cultivated tomato species. In: Gupta KJ, Igamberdiev AU (eds) Reactive oxygen and nitrogen species signaling and communications in plants. Springer, Cham, pp 89–131Google Scholar
  61. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13PubMedCrossRefGoogle Scholar
  62. Nappi AJ, Vass E (1998) Hydroxyl radical formation resulting from the interaction of nitric oxide and hydrogen peroxide. Biochim Biophys Acta 1380:55–63PubMedCrossRefGoogle Scholar
  63. Narendra S, Venkataramani S, Shen G, Wang J, Pasapula V, Lin Y, Kornyeyev D, Holaday AS, Zhang H (2006) The Arabidopsis ascorbate peroxidase 3 is a peroxisomal membrane-bound antioxidant enzyme and is dispensable for Arabidopsis growth and development. J Exp Bot 57:3033–3042Google Scholar
  64. Nikkanen L, Rintamäki E (2014) Thioredoxin-dependent regulatory networks in chloroplasts under fluctuating light conditions. Philos Trans R Soc B 369:20130224CrossRefGoogle Scholar
  65. Palma JM, Jiménez A, Sandalio LM, Corpas FJ, Lundqvist M, Gómez M, Sevilla F, del Río LA (2006) Antioxidative enzymes from chloroplasts, mitochondria, and peroxisomes during leaf senescence of nodulated pea plants. J Exp Bot 57:1747–1758PubMedCrossRefGoogle Scholar
  66. Palma JM, Sevilla F, Jiménez A, del Río LA, Corpas FJ, Álvarez de Morales P, Camejo DM (2015) Physiology of pepper fruit and the metabolism of antioxidants: chloroplasts, mitochondria and peroxisomes. Ann Bot 116:627–636PubMedPubMedCentralCrossRefGoogle Scholar
  67. Passaia G, Spagnolo-Fonini L, Caverzan A, Jardim-Messeder D, Christoff AP, Gaeta ML, de Araujo Mariath JE, Margis R, Margis-Pinheiro M (2013) The mitochondrial glutathione peroxidase GPX3 is essential for H2O2 homeostasis and root and shoot development in rice. Plant Sci 208:93–101PubMedCrossRefGoogle Scholar
  68. Puerto-Galán L, Pérez-Ruiz JM, Ferrández J, Cano B, Naranjo B, Nájera VA, González M, Lindahl AM, Cejudo FJ (2013) Overoxidation of chloroplast 2-Cys peroxiredoxins: balancing toxic and signaling activities of hydrogen peroxide. Front Plant Sci 4:310PubMedPubMedCentralCrossRefGoogle Scholar
  69. Puntarulo S, Jasid S, Simontacchi M (2007) Reactive nitrogen species-dependent effects on soybean chloroplasts. Plant Signal Behav 2:96–98PubMedPubMedCentralCrossRefGoogle Scholar
  70. Raha S, Robinson BH (2000) Mitochondria, oxygen free radicals, disease and ageing. Trend Biochem Sci 25:502–508PubMedCrossRefPubMedCentralGoogle Scholar
  71. Rhodin J (1954) Correlation of ultrastructural organization and function in normal and experimentally changed proximal tubule cells of the mouse kidney. Karolinska Institutet, Doctoral Thesis. Stockholm, SwedenGoogle Scholar
  72. Sevilla F, Jiménez A, Lázaro JJ (2015) What do the plant mitochondrial antioxidant and redox systems have to say under salinity, drought, and extreme temperature? In: Gupta DK, Palma JM, Corpas FJ (eds) Reactive oxygen species and oxidative damage in plants under stress. Springer, Cham, pp 23–55CrossRefGoogle Scholar
  73. Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305–1319PubMedCrossRefPubMedCentralGoogle Scholar
  74. Smirnoff N, Arnaud D (2018) Hydrogen peroxide metabolism and functions in plants. New Phytol 221:1197–1214Google Scholar
  75. Stöhr C, Stremlau S (2006) Formation and possible roles of nitric oxide in plant roots. J Exp Bot 57:463–470PubMedCrossRefPubMedCentralGoogle Scholar
  76. Stöhr C, Ullrich WR (2002) Generation and possible roles of NO in plant roots and their apoplastic space. J Exp Bot 53:2293–2303PubMedCrossRefPubMedCentralGoogle Scholar
  77. Stöhr C, Strube F, Marx G, Ullrich WR, Rockel P (2001) A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite. Planta 212:835–841PubMedCrossRefPubMedCentralGoogle Scholar
  78. Stolz DB, Zamora R, Vodovotz Y, Loughran PA, Billiar TR, Kim YM, Simmons RL, Watkins SC (2002) Peroxisomal localization of inducible nitric oxide synthase in hepatocytes. Hepatology 36:81–93PubMedCrossRefPubMedCentralGoogle Scholar
  79. Tewari RK, Prommer J, Watanabe M (2013) Endogenous nitric oxide generation in protoplast chloroplasts. Plant Cell Rep 32:31–44PubMedCrossRefGoogle Scholar
  80. Tun NN, Santa-Catarina C, Begum T, Silveira V, Handro W, Floh EI, Scherer GF (2006) Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant Cell Physiol 47:346–354PubMedCrossRefPubMedCentralGoogle Scholar
  81. Turrens JF (1997) Superoxide production by the mitochondrial respiratory chain. Biosci Rep 17:3–8CrossRefGoogle Scholar
  82. Ursini F, Maiorino M, Brigelius-Flohe R, Aumann KD, Roveri A, Schomburg D, Flohé L (1995) Diversity of glutathione peroxidases. Method Enzymol 252:38–53CrossRefGoogle Scholar
  83. Weisiger RA, Fridovich I (1973) Mitochondrial superoxide simutase. Site of synthesis and intramitochondrial localization. J Biol Chem 248:4793–4796PubMedGoogle Scholar
  84. Wimalasekera R, Villar C, Begum T, Scherer GF (2011) COPPER AMINE OXIDASE1 (CuAO1) of Arabidopsis thaliana contributes to abscisic acid- and polyamine-induced nitric oxide biosynthesis and abscisic acid signal transduction. Mol Plant 4:663–678PubMedCrossRefGoogle Scholar
  85. Wulff A, Oliveira HC, Saviani EE, Salgado I (2009) Nitrite reduction and superoxide-dependent nitric oxide degradation by Arabidopsis mitochondria: influence of external NAD(P)H dehydrogenases and alternative oxidase in the control of nitric oxide levels. Nitric Oxide 21:132–139PubMedCrossRefPubMedCentralGoogle Scholar
  86. Yamaguchi K, Mori H, Nishimura M (1995) A novel isoenzyme of ascorbate peroxidase localized on glyoxysomal and leaf peroxisomal membranes in pumpkin. Plant Cell Physiol 36:1157–1162PubMedCrossRefPubMedCentralGoogle Scholar
  87. Yamasaki H, Sakihama Y, Takahashi S (1999) An alternative pathway for nitric oxide production in plants: new features of an old enzyme. Trend Plant Sci 4:128–129CrossRefGoogle Scholar
  88. Yoshimura K, Yabuta Y, Tamoi M, Ishikawa T, Shigeoka S (1999) Alternatively spliced mRNA variants of chloroplast ascorbate peroxidase isoenzymes in spinach leaves. Biochem J 338:41–48PubMedPubMedCentralCrossRefGoogle Scholar
  89. Yun BW, Feechan A, Yin M, Saidi NB, Le Bihan T, Yu M, Moore JW, Kang JG, Kwon E, Spoel SH, Pallas JA, Loake GJ (2011) S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature 478:264–268PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • José M. Palma
    • 1
    Email author
  • Dharmendra K. Gupta
    • 2
  • Francisco J. Corpas
    • 1
  1. 1.Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and AgricultureEstación Experimental del Zaidín, CSICGranadaSpain
  2. 2.Institut für Radioökologie und Strahlenschutz Gottfried Wilhelm Leibniz UniversitätHannoverGermany

Personalised recommendations