Advertisement

Animal Models in Retinoblastoma Research

  • Thomas A. Mendel
  • Anthony B. DanielsEmail author
Chapter

Abstract

Many animal models of retinoblastoma exist, each of which recapitulates some, but not all, of the features of human disease. The most commonly used models that are available are described in this chapter. These include various genetic and xenograft models of retinoblastoma and include a multitude of species, such as mice, rats, rabbits, pigs, and nonhuman primates. A wide array of uses of animal models in retinoblastoma research are presented here, including those for the study of tumor biology and response to treatment, assessment of pharmacokinetics, and measurement of chemotherapeutic toxicity and efficacy for drug discovery. Importantly, we discuss the relative strengths and limitations of each model. Factors for investigators to consider in designing various types of experiments are highlighted, including type of tumor model (genetic or xenograft), immune status (native, immunologically naïve, genetically immunocompromised, or pharmacologically immunosuppressed), and choice of species. While a particular model may be ideal for a certain use, no single model is appropriate for all experiments. Species-specific factors are especially critical when studying regional and local chemotherapy delivery.

Keywords

Retinoblastoma Animal model Pharmacokinetics Safety Knockout Xenograft Drug discovery 

References

  1. 1.
    de Jager SM, Murray JA. Retinoblastoma proteins in plants. Plant Mol Biol. 1999;41(3):295–9. Epub 1999/12/22.CrossRefGoogle Scholar
  2. 2.
    Kobayashi S, Mukai N. Retinoblastoma-like tumors induced in rats by human adenovirus. Investig Ophthalmol. 1973;12(11):853–6. Epub 1973/11/01.Google Scholar
  3. 3.
    Mukai N, Kalter SS, Cummins LB, et al. Retinal tumor induced in the baboon by human adenovirus 12. Science. 1980;210(4473):1023–5. Epub 1980/11/28.CrossRefGoogle Scholar
  4. 4.
    Hu N, Gutsmann A, Herbert DC, et al. Heterozygous Rb-1 delta 20/+mice are predisposed to tumors of the pituitary gland with a nearly complete penetrance. Oncogene. 1994;9(4):1021–7. Epub 1994/04/01.PubMedGoogle Scholar
  5. 5.
    Williams BO, Schmitt EM, Remington L, et al. Extensive contribution of Rb-deficient cells to adult chimeric mice with limited histopathological consequences. EMBO J. 1994;13(18):4251–9. Epub 1994/09/15. PubMed PMID: 7925270; PMCID: PMC395352.CrossRefGoogle Scholar
  6. 6.
    Zhang J, Schweers B, Dyer MA. The first knockout mouse model of retinoblastoma. Cell cycle (Georgetown, Tex). 2004;3(7):952–9. Epub 2004/06/11.CrossRefGoogle Scholar
  7. 7.
    Jacks T, Fazeli A, Schmitt EM, et al. Effects of an Rb mutation in the mouse. Nature. 1992;359(6393):295–300. Epub 1992/09/24.  https://doi.org/10.1038/359295a0.
  8. 8.
    Mendoza PR, Grossniklaus HE. The biology of retinoblastoma. Prog Mol Biol Transl Sci. 2015;134:503–16. Epub 2015/08/28.  https://doi.org/10.1016/bs.pmbts.2015.06.012.CrossRefPubMedGoogle Scholar
  9. 9.
    Lambertz I, Nittner D, Mestdagh P, et al. Monoallelic but not biallelic loss of Dicer1 promotes tumorigenesis in vivo. Cell death and differentiation. 2010;17(4):633–641. Epub 2009/12/19.  https://doi.org/10.1038/cdd.2009.202. PubMed PMID: 20019750; PMCID: PMC2892162.
  10. 10.
    Nemeth KM, Federico S, Carcaboso AM, et al. Subconjunctival carboplatin and systemic topotecan treatment in preclinical models of retinoblastoma. Cancer. 2011;117(2):421–434. Epub 2010/09/08.  https://doi.org/10.1002/cncr.25574. PubMed PMID: 20818652; PMCID: PMC3000447.
  11. 11.
    Benavente CA, Finkelstein D, Johnson DA, et al. Chromatin remodelers HELLS and UHRF1 mediate the epigenetic deregulation of genes that drive retinoblastoma tumor progression. Oncotarget. 2014;5(20):9594–9608. Epub 2014/10/23.  https://doi.org/10.18632/oncotarget.2468. PubMed PMID: 25338120; PMCID: PMC4259422.
  12. 12.
    Kivela T, Virtanen I, Marcus DM, et al. Neuronal and glial properties of a murine transgenic retinoblastoma model. Am J Pathol. 1991;138(5):1135–48. Epub 1991/05/01. PubMed PMID: 1708946; PMCID: PMC1886007.PubMedPubMedCentralGoogle Scholar
  13. 13.
    O’Brien JM, Marcus DM, Niffenegger AS, et al. Trilateral retinoblastoma in transgenic mice. Trans Am Ophthalmol Soc. 1989;87:301–22; discussion 22-6. Epub 1989/01/01. PubMed PMID: 2576479; PMCID: PMC1298548.PubMedPubMedCentralGoogle Scholar
  14. 14.
    O’Brien JM, Marcus DM, Bernards R, et al. A transgenic mouse model for trilateral retinoblastoma. Arch Ophthalmol. 1990;108(8):1145–51. Epub 1990/08/01. PubMed PMID: 1696469.CrossRefGoogle Scholar
  15. 15.
    Bogenmann E, Lochrie MA, Simon MI. Cone cell-specific genes expressed in retinoblastoma. Science. 1988;240(4848):76–8. Epub 1988/04/01.CrossRefGoogle Scholar
  16. 16.
    Vrabec T, Arbizo V, Adamus G, et al. Rod cell-specific antigens in retinoblastoma. Arch Ophthalmol. 1989;107(7):1061–3. Epub 1989/07/01.CrossRefGoogle Scholar
  17. 17.
    Pajovic S, Corson TW, Spencer C, et al. The TAg-RB murine retinoblastoma cell of origin has immunohistochemical features of differentiated Muller glia with progenitor properties. Invest Ophthalmol Vis Sci. 2011;52(10):7618–7624. Epub 2011/08/25.  https://doi.org/10.1167/iovs.11-7989. PubMed PMID: 21862643; PMCID: PMC3183982.
  18. 18.
    Xu XL, Fang Y, Lee TC, et al. Retinoblastoma has properties of a cone precursor tumor and depends upon cone-specific MDM2 signaling. Cell. 2009;137(6):1018–1031. Epub 2009/06/16.  https://doi.org/10.1016/j.cell.2009.03.051. PubMed PMID: 19524506; PMCID: PMC5659855.
  19. 19.
    Marcus DM, Lasudry JG, Carpenter JL, et al. Trilateral tumors in four different lines of transgenic mice expressing SV40 T-antigen. Invest Ophthalmol Vis Sci. 1996;37(2):392–6. Epub 1996/02/01.PubMedGoogle Scholar
  20. 20.
    Al-Ubaidi MR, Font RL, Quiambao AB, et al. Bilateral retinal and brain tumors in transgenic mice expressing simian virus 40 large T antigen under control of the human interphotoreceptor retinoid-binding protein promoter. J Cell Biol. 1992;119(6):1681–7. Epub 1992/12/01. PubMed PMID: 1334963; PMCID: PMC2289740.CrossRefGoogle Scholar
  21. 21.
    Howes KA, Lasudry JG, Albert DM, et al. Photoreceptor cell tumors in transgenic mice. Invest Ophthalmol Vis Sci. 1994;35(2):342–51. Epub 1994/02/01. PubMed PMID: 8112979.PubMedGoogle Scholar
  22. 22.
    Al-Ubaidi MR, Hollyfield JG, Overbeek PA, et al. Photoreceptor degeneration induced by the expression of simian virus 40 large tumor antigen in the retina of transgenic mice. Proc Natl Acad Sci U S A. 1992;89(4):1194–8. Epub 1992/02/15. PubMed PMID: 1311085; PMCID: PMC48415.CrossRefGoogle Scholar
  23. 23.
    Sobrin L, Hayden BC, Murray TG, et al. External beam radiation “salvage” therapy in transgenic murine retinoblastoma. Arch Ophthalmol. 2004;122(2):251–7. Epub 2004/02/11.  https://doi.org/10.1001/archopht.122.2.251.CrossRefPubMedGoogle Scholar
  24. 24.
    Murray TG, O’Brien JM, Steeves RA, et al. Radiation therapy and ferromagnetic hyperthermia in the treatment of murine transgenic retinoblastoma. Arch Ophthalmol. 1996;114(11):1376–81. Epub 1996/11/01.CrossRefGoogle Scholar
  25. 25.
    Harbour JW, Murray TG, Hamasaki D, et al. Local carboplatin therapy in transgenic murine retinoblastoma. Invest Ophthalmol Vis Sci. 1996;37(9):1892–8. Epub 1996/08/01.PubMedGoogle Scholar
  26. 26.
    Hayden BH, Murray TG, Scott IU, et al. Subconjunctival carboplatin in retinoblastoma: impact of tumor burden and dose schedule. Arch Ophthalmol. 2000;118(11):1549–54. Epub 2000/11/14.CrossRefGoogle Scholar
  27. 27.
    Murray TG, Cicciarelli N, O’Brien JM, et al. Subconjunctival carboplatin therapy and cryotherapy in the treatment of transgenic murine retinoblastoma. Arch Ophthalmol. 1997;115(10):1286–90. Epub 1997/10/24.CrossRefGoogle Scholar
  28. 28.
    Xu XL, Singh HP, Wang L, et al. Rb suppresses human cone-precursor-derived retinoblastoma tumours. Nature. 2014;514(7522):385–388. Epub 2014/09/26.  https://doi.org/10.1038/nature13813. PubMed PMID: 25252974; PMCID: PMC4232224.
  29. 29.
    Bremner R, Sage J. The origin of human retinoblastoma. Nature. 2014;514:312.  https://doi.org/10.1038/nature13748.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Gallie BL, Campbell C, Devlin H, et al. Developmental basis of retinal-specific induction of cancer by RB mutation. Cancer Res. 1999;59(7 Suppl):1731s–5s. Epub 1999/04/10.PubMedGoogle Scholar
  31. 31.
    Daniels AB, Froehler MT, Pierce JM, et al. Pharmacokinetics, tissue localization, toxicity, and treatment efficacy in the first small animal (Rabbit) model of intra-arterial chemotherapy for retinoblastoma. Invest Ophthalmol Vis Sci. 2018;59(1):446–454. Epub 2018/01/26.  https://doi.org/10.1167/iovs.17-22302. PubMed PMID: 29368001; PMCID: PMC5783625.
  32. 32.
    Kang SJ, Grossniklaus HE. Rabbit model of retinoblastoma. J Biomed Biotechnol. 2011;2011:5.  https://doi.org/10.1155/2011/394730.CrossRefGoogle Scholar
  33. 33.
    Brodowska K, Theodoropoulou S, Meyer Zu Horste M, et al. Effects of metformin on retinoblastoma growth in vitro and in vivo. Int J Oncol. 2014;45(6):2311–2324. Epub 2014/09/13.  https://doi.org/10.3892/ijo.2014.2650. PubMed PMID: 25215935; PMCID: PMC4215581.
  34. 34.
    Zhang B, Li Y, Zhong X, et al. Establishment of retinoblastoma model in NOD-SCID mice and study of metastasis. Yan Ke Xue Bao = Eye science. 2005;21(3):185–91. Epub 2006/12/14.PubMedGoogle Scholar
  35. 35.
    Rolstad B. The athymic nude rat: an animal experimental model to reveal novel aspects of innate immune responses? Immunol Rev. 2001;184:136–44. Epub 2002/03/29.CrossRefGoogle Scholar
  36. 36.
    Li Z, Wu X, Li J, et al. Antitumor activity of celastrol nanoparticles in a xenograft retinoblastoma tumor model. Int J Nanomedicine. 2012;7:2389–2398. Epub 2012/06/05.  https://doi.org/10.2147/ijn.s29945. PubMed PMID: 22661892; PMCID: PMC3357982.
  37. 37.
    Song X, Zhou Y, Jia R, et al. Inhibition of retinoblastoma in vitro and in vivo with conditionally replicating oncolytic adenovirus H101. Invest Ophthalmol Vis Sci. 2010;51(5):2626–35. Epub 2009/12/17.  https://doi.org/10.1167/iovs.09-3516.CrossRefPubMedGoogle Scholar
  38. 38.
    Ruiz S, Segrelles C, Bravo A, et al. Abnormal epidermal differentiation and impaired epithelial-mesenchymal tissue interactions in mice lacking the retinoblastoma relatives p107 and p130. Development. 2003;130(11):2341–53. Epub 2003/04/19.CrossRefGoogle Scholar
  39. 39.
    Sabet SJ, Darjatmoko SR, Lindstrom MJ, et al. Antineoplastic effect and toxicity of 1,25-dihydroxy-16-ene-23-yne-vitamin D3 in athymic mice with Y-79 human retinoblastoma tumors. Arch Ophthalmol. 1999;117(3):365–70. Epub 1999/03/24.CrossRefGoogle Scholar
  40. 40.
    Madreperla SA, Whittum-Hudson JA, Prendergast RA, et al. Intraocular tumor suppression of retinoblastoma gene-reconstituted retinoblastoma cells. Cancer Res. 1991;51(23 Pt 1):6381–4. Epub 1991/12/01.PubMedGoogle Scholar
  41. 41.
    Chevez-Barrios P, Hurwitz MY, Louie K, et al. Metastatic and nonmetastatic models of retinoblastoma. Am J Pathol. 2000;157(4):1405–1412. Epub 2000/10/06.  https://doi.org/10.1016/s0002-9440(10)64653-6. PubMed PMID: 11021842; PMCID: PMC1850157.
  42. 42.
    Assayag F, Nicolas A, Vacher S, et al. Combination of carboplatin and bevacizumab is an efficient therapeutic approach in retinoblastoma patient-derived xenografts. Invest Ophthalmol Vis Sci. 2016;57(11):4916–4926. Epub 2016/09/23.  https://doi.org/10.1167/iovs.15-18725. PubMed PMID: 27654418.
  43. 43.
    del Cerro M, Seigel GM, Lazar E, et al. Transplantation of Y79 cells into rat eyes: an in vivo model of human retinoblastomas. Invest Ophthalmol Vis Sci. 1993;34(12):3336–46. Epub 1993/11/01. PubMed PMID: 8225869.PubMedGoogle Scholar
  44. 44.
    Kang SJ, Grossniklaus HE. Rabbit model of retinoblastoma. J Biomed Biotechnol. 2011;2011:394730. Epub 2011/01/22.  https://doi.org/10.1155/2011/394730. PubMed PMID: 21253494; PMCID: PMC3022222.
  45. 45.
    Kim JW, Jacobsen B, Zolfaghari E, et al. Rabbit model of ocular indirect photodynamic therapy using a retinoblastoma xenograft. Graefes Arch Clin Exp Ophthalmol. 2017;255(12):2363–73. Epub 2017/10/04.  https://doi.org/10.1007/s00417-017-3805-8.CrossRefPubMedGoogle Scholar
  46. 46.
    Chan HS, DeBoer G, Thiessen JJ, et al. Combining cyclosporin with chemotherapy controls intraocular retinoblastoma without requiring radiation. Clin Cancer Res. 1996;2(9):1499–508. Epub 1996/09/01.PubMedGoogle Scholar
  47. 47.
    Mohney BG, Elner VM, Smith AB, et al. Preclinical acute ocular safety study of combined intravitreal carboplatin and etoposide phosphate for retinoblastoma. Ophthalmic Surg Lasers Imaging Retina 2017;48(2):151–159. Epub 2017/02/15.  https://doi.org/10.3928/23258160-20170130-09. PubMed PMID: 28195618.
  48. 48.
    Houston SK, Lampidis TJ, Murray TG. Models and discovery strategies for new therapies of retinoblastoma. Expert Opin Drug Discovery. 2013;8(4):383–394. Epub 2013/02/23.  https://doi.org/10.1517/17460441.2013.772975. PubMed PMID: 23427911.
  49. 49.
    Schaiquevich P, Fabius AW, Francis JH, et al. Ocular pharmacology of chemotherapy for retinoblastoma. Retina 2017;37(1):1–10. Epub 2016/09/13.  https://doi.org/10.1097/iae.0000000000001275. PubMed PMID: 27617542.
  50. 50.
    Pritchard EM, Stewart E, Zhu F, et al. Pharmacokinetics and efficacy of the spleen tyrosine kinase inhibitor r406 after ocular delivery for retinoblastoma. Pharm Res. 2014;31(11):3060–3072. Epub 2014/06/08.  https://doi.org/10.1007/s11095-014-1399-y. PubMed PMID: 24906597; PMCID: PMC4213378.
  51. 51.
    Kim JH, Kim C, Kim JH, et al. Absence of intravitreal bevacizumab-induced neuronal toxicity in the retina. Neurotoxicology. 2008;29(6):1131–5. Epub 2008/07/22.  https://doi.org/10.1016/j.neuro.2008.06.006.CrossRefPubMedGoogle Scholar
  52. 52.
    Zhang Q, Cheng Y, Huang L, et al. Inhibitory effect of carboplatin in combination with bevacizumab on human retinoblastoma in an in vitro and in vivo model. Oncol Lett. 2017;14(5):5326–5332. Epub 2017/11/04.  https://doi.org/10.3892/ol.2017.6827. PubMed PMID: 29098028; PMCID: PMC5652222.
  53. 53.
    Buitrago E, Winter U, Williams G, et al. Pharmacokinetics of melphalan after intravitreal injection in a rabbit model. J Ocul Pharmacol Ther. 2016;32(4):230–5. Epub 2016/01/20.  https://doi.org/10.1089/jop.2015.0088.CrossRefPubMedGoogle Scholar
  54. 54.
    Buitrago E, Del Sole MJ, Torbidoni A, et al. Ocular and systemic toxicity of intravitreal topotecan in rabbits for potential treatment of retinoblastoma. Exp Eye Res. 2013;108:103–9. Epub 2013/01/22.  https://doi.org/10.1016/j.exer.2013.01.002.CrossRefPubMedGoogle Scholar
  55. 55.
    Francis JH, Schaiquevich P, Buitrago E, et al. Local and systemic toxicity of intravitreal melphalan for vitreous seeding in retinoblastoma: a preclinical and clinical study. Ophthalmology. 2014;121(9):1810–7. Epub 2014/05/14.  https://doi.org/10.1016/j.ophtha.2014.03.028.CrossRefPubMedGoogle Scholar
  56. 56.
    Winter U, Buitrago E, Mena HA, et al. Pharmacokinetics, safety, and efficacy of intravitreal digoxin in preclinical models for retinoblastoma. Invest Ophthalmol Vis Sci. 2015;56(8):4382–93. Epub 2015/07/16.  https://doi.org/10.1167/iovs.14-16239.CrossRefPubMedGoogle Scholar
  57. 57.
    Schaiquevich P, Buitrago E, Taich P, et al. Pharmacokinetic analysis of melphalan after superselective ophthalmic artery infusion in preclinical models and retinoblastoma patients. Invest Ophthalmol Vis Sci. 2012;53(7):4205–12. Epub 2012/05/26.  https://doi.org/10.1167/iovs.12-9501.CrossRefPubMedGoogle Scholar
  58. 58.
    Hayden BC, Jockovich ME, Murray TG, et al. Pharmacokinetics of systemic versus focal Carboplatin chemotherapy in the rabbit eye: possible implication in the treatment of retinoblastoma. Invest Ophthalmol Vis Sci. 2004;45(10):3644–9. Epub 2004/09/29.  https://doi.org/10.1167/iovs.04-0228.CrossRefPubMedGoogle Scholar
  59. 59.
    Edelhauser HF, Rowe-Rendleman CL, Robinson MR, et al. Ophthalmic drug delivery systems for the treatment of retinal diseases: basic research to clinical applications. Invest Ophthalmol Vis Sci. 2010;51(11):5403–5420. Epub 2010/10/29.  https://doi.org/10.1167/iovs.10-5392. PubMed PMID: 20980702; PMCID: PMC3061492.
  60. 60.
    Marr BP, Dunkel IJ, Linker A, et al. Periocular carboplatin for retinoblastoma: long-term report (12 years) on efficacy and toxicity. Br J Ophthalmol 2012;96(6):881–883. Epub 2012/02/14.  https://doi.org/10.1136/bjophthalmol-2011-300517.
  61. 61.
    Zhang F, Tagen M, Throm S, et al. Whole-body physiologically based pharmacokinetic model for nutlin-3a in mice after intravenous and oral administration. Drug Metab Dispos. 2011;39(1):15–21. Epub 2010/10/16.  https://doi.org/10.1124/dmd.110.035915. PubMed PMID: 20947617; PMCID: PMC3014266.
  62. 62.
    Kim JH, Kim JH, Kim KW, et al. Intravenously administered gold nanoparticles pass through the blood-retinal barrier depending on the particle size, and induce no retinal toxicity. Nanotechnology. 2009;20(50):505101. Epub 2009/11/20.  https://doi.org/10.1088/0957-4484/20/50/505101.
  63. 63.
    Pascual-Pasto G, Olaciregui NG, Opezzo JAW, et al. Increased delivery of chemotherapy to the vitreous by inhibition of the blood-retinal barrier. J Control Release. 2017;264:34–44. Epub 2017/08/24.  https://doi.org/10.1016/j.jconrel.2017.08.018.CrossRefPubMedGoogle Scholar
  64. 64.
    Schaiquevich P, Buitrago E, Ceciliano A, et al. Pharmacokinetic analysis of topotecan after superselective ophthalmic artery infusion and periocular administration in a porcine model. Retina. 2012;32(2):387–95. Epub 2011/09/01.  https://doi.org/10.1097/IAE.0b013e31821e9f8a.CrossRefPubMedGoogle Scholar
  65. 65.
    Wilson MW, Jackson JS, Phillips BX, et al. Real-time ophthalmoscopic findings of superselective intraophthalmic artery chemotherapy in a nonhuman primate model. Arch Ophthalmol. 2011;129(11):1458-1465. Epub 2011/11/16.  https://doi.org/10.1001/archophthalmol.2011.330. PubMed PMID: 22084215; PMCID: PMC3527084.
  66. 66.
    Tschulakow AV, Schraermeyer U, Rodemann HP, et al. Establishment of a novel retinoblastoma (Rb) nude mouse model by intravitreal injection of human Rb Y79 cells - comparison of in vivo analysis versus histological follow up. Biol Open. 2016;5(11):1625–1630. Epub 2016/10/04.  https://doi.org/10.1242/bio.019976. PubMed PMID: 27694105; PMCID: PMC5155534.
  67. 67.
    Cassoux N, Thuleau A, Assayag F, et al. Establishment of an Orthotopic Xenograft Mice Model of Retinoblastoma Suitable for Preclinical Testing. Ocul Oncol Pathol. 2015;1(3):200–6. Epub 2016/05/14.  https://doi.org/10.1159/000370156. PubMed PMID: 27171982; PMCID: PMC4847680.
  68. 68.
    Aerts I, Leuraud P, Blais J, et al. In vivo efficacy of photodynamic therapy in three new xenograft models of human retinoblastoma. Photodiagn Photodyn Ther. 2010;7(4):275–83. Epub 2010/11/30.  https://doi.org/10.1016/j.pdpdt.2010.09.003.CrossRefGoogle Scholar
  69. 69.
    Bajenaru ML, Pina Y, Murray TG, et al. Gelatinase expression in retinoblastoma: modulation of LH(BETA)T(AG) retinal tumor development by anecortave acetate. Invest Ophthalmol Vis Sci. 2010;51(6):2860–2864. Epub 2010/01/29.  https://doi.org/10.1167/iovs.09-4500. PubMed PMID: 20107171; PMCID: PMC2891454.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Ophthalmology and Visual SciencesVanderbilt Eye InstituteNashvilleUSA
  2. 2.Vanderbilt-Ingram Cancer CenterVanderbilt University Medical CenterNashvilleUSA

Personalised recommendations