Advertisement

Heterogeneity of Human Mesenchymal Stromal/Stem Cells

  • Weiqiang Wang
  • Zhong Chao Han
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1123)

Abstract

Increasing evidence has shown that mesenchymal stem cells (MSCs) isolated from body tissues are heterogeneous while being examined in vitro and in vivo. Besides some common characteristics, MSCs derived from different tissues exhibit unique biological properties. In addition, the therapeutic effects of MSCs may vary widely due to their heterogeneity and the technical differences in large-scale ex vivo expansion. In this chapter, the heterogeneity of MSCs will be discussed in three levels: the individual donors, the tissue sources, and the cell surface markers.

Keywords

Mesenchymal stem cells Heterogeneity Surface markers Biological property Cell therapy Subpopulation Regenerative property Immunomodulatory ability Individual donor Tissue source 

References

  1. 1.
    Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3(4):393–403PubMedGoogle Scholar
  2. 2.
    Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147PubMedCrossRefGoogle Scholar
  3. 3.
    Phinney DG, Prockop DJ (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views. Stem Cells 25(11):2896–2902PubMedCrossRefGoogle Scholar
  4. 4.
    English K, Mahon BP (2011) Allogeneic mesenchymal stem cells: agents of immune modulation. J Cell Biochem 112(8):1963–1968PubMedCrossRefGoogle Scholar
  5. 5.
    Dominici M, Le BK, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317PubMedCrossRefGoogle Scholar
  6. 6.
    Phinney DG, Kopen G, Righter W, Webster S, Tremain N, Prockop DJ (1999) Donor variation in the growth properties and osteogenic potential of human marrow stromal cells. J Cell Biochem 75(3):424–436PubMedCrossRefGoogle Scholar
  7. 7.
    Phinney DG, Kopen G, Isaacson RL, Prockop DJ (1999) Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: variations in yield, growth, and differentiation. J Cell Biochem 72(4):570–585PubMedCrossRefGoogle Scholar
  8. 8.
    Peltzer J, Montespan F, Thepenier C et al (2015) Heterogeneous functions of perinatal mesenchymal stromal cells require a preselection before their banking for clinical use. Stem Cells Dev 24(3):329–344PubMedCrossRefGoogle Scholar
  9. 9.
    Zhou S, Greenberger JS, Epperly MW et al (2008) Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell 7(3):335–343PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Wagner W, Ho AD (2007) Mesenchymal stem cell preparations—comparing apples and oranges. Stem Cell Rev 3(4):239–248PubMedCrossRefGoogle Scholar
  11. 11.
    Kang I, Lee BC, Choi SW et al (2018) Donor-dependent variation of human umbilical cord blood mesenchymal stem cells in response to hypoxic preconditioning and amelioration of limb ischemia. Exp Mol Med 50(4):35PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Lu LL, Liu YJ, Yang SG et al (2006) Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica 91(8):1017–1026PubMedGoogle Scholar
  13. 13.
    Baksh D, Yao R, Tuan RS (2007) Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 25(6):1384–1392PubMedCrossRefGoogle Scholar
  14. 14.
    Amable PR, Teixeira MV, Carias RB, Granjeiro JM, Borojevic R (2014) Protein synthesis and secretion in human mesenchymal cells derived from bone marrow, adipose tissue and Wharton's jelly. Stem Cell Res Ther 5(2):53PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Liu M, Yang SG, Shi L et al (2010) Mesenchymal stem cells from bone marrow show a stronger stimulating effect on megakaryocyte progenitor expansion than those from non-hematopoietic tissues. Platelets 21(3):199–210PubMedCrossRefGoogle Scholar
  16. 16.
    Hsiao ST, Asgari A, Lokmic Z et al (2012) Comparative analysis of paracrine factor expression in human adult mesenchymal stem cells derived from bone marrow, adipose, and dermal tissue. Stem Cells Dev 21(12):2189–2203PubMedCrossRefGoogle Scholar
  17. 17.
    Heo JS, Choi Y, Kim HS, Kim HO (2016) Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. Int J Mol Med 37(1):115–125PubMedCrossRefGoogle Scholar
  18. 18.
    Stubbendorff M, Deuse T, Hua X et al (2013) Immunological properties of extraembryonic human mesenchymal stromal cells derived from gestational tissue. Stem Cells Dev 22(19):2619–2629PubMedCrossRefGoogle Scholar
  19. 19.
    Zhu Y, Yang Y, Zhang Y et al (2014) Placental mesenchymal stem cells of fetal and maternal origins demonstrate different therapeutic potentials. Stem Cell Res Ther 5(2):48PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Han ZC, Du WJ, Han ZB, Liang L (2017) New insights into the heterogeneity and functional diversity of human mesenchymal stem cells. Biomed Mater Eng 28(s1):S29–S45PubMedGoogle Scholar
  21. 21.
    Huang GT, Gronthos S, Shi S (2009) Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 88(9):792–806PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Hermida-Gómez T, Fuentes-Boquete I, Gimeno-Longas MJ et al (2011) Quantification of cells expressing mesenchymal stem cell markers in healthy and osteoarthritic synovial membranes. J Rheumatol 38(2):339–349PubMedCrossRefGoogle Scholar
  23. 23.
    Castrechini NM, Murthi P, Qin S et al (2012) Decidua parietalis-derived mesenchymal stromal cells reside in a vascular niche within the choriodecidua. Reprod Sci 19(12):1302–1314PubMedCrossRefGoogle Scholar
  24. 24.
    Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM (2001) Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol 189(1):54–63PubMedCrossRefGoogle Scholar
  25. 25.
    Rosada C, Justesen J, Melsvik D, Ebbesen P, Kassem M (2003) The human umbilical cord blood: a potential source for osteoblast progenitor cells. Calcif Tissue Int 72(2):135–142PubMedCrossRefGoogle Scholar
  26. 26.
    Sarugaser R, Lickorish D, Baksh D, Hosseini MM, Davies JE (2005) Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells 23(2):220–229PubMedCrossRefGoogle Scholar
  27. 27.
    Ning H, Lin G, Lue TF, Lin CS (2011) Mesenchymal stem cell marker Stro-1 is a 75 kd endothelial antigen. Biochem Biophys Res Commun 413(2):353–357PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Martens TP, See F, Schuster MD et al (2006) Mesenchymal lineage precursor cells induce vascular network formation in ischemic myocardium. Nat Clin Pract Cardiovasc Med 3(Suppl 1):S18–S22PubMedCrossRefGoogle Scholar
  29. 29.
    Bensidhoum M, Chapel A, Francois S et al (2004) Homing of in vitro expanded Stro-1- or Stro-1+ human mesenchymal stem cells into the NOD/SCID mouse and their role in supporting human CD34 cell engraftment. Blood 103(9):3313–3319PubMedCrossRefGoogle Scholar
  30. 30.
    Psaltis PJ, Paton S, See F et al (2010) Enrichment for STRO-1 expression enhances the cardiovascular paracrine activity of human bone marrow-derived mesenchymal cell populations. J Cell Physiol 223(2):530–540PubMedGoogle Scholar
  31. 31.
    Kuçi S, Kuçi Z, Kreyenberg H et al (2010) CD271 antigen defines a subset of multipotent stromal cells with immunosuppressive and lymphohematopoietic engraftment-promoting properties. Haematologica 95(4):651–659PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Hermida-Gómez T, Fuentes-Boquete I, Gimeno-Longas MJ et al (2011) Bone marrow cells immunomagnetically selected for CD271+ antigen promote in vitro the repair of articular cartilage defects. Tissue Eng Part A 17(7-8):1169–1179PubMedCrossRefGoogle Scholar
  33. 33.
    Jones EA, Kinsey SE, English A et al (2002) Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells. Arthritis Rheum 46(12):3349–3360PubMedCrossRefGoogle Scholar
  34. 34.
    Quirici N, Scavullo C, de Girolamo L et al (2010) Anti-L-NGFR and -CD34 monoclonal antibodies identify multipotent mesenchymal stem cells in human adipose tissue. Stem Cells Dev 19(6):915–925PubMedCrossRefGoogle Scholar
  35. 35.
    Park JC, Kim JM, Jung IH et al (2011) Isolation and characterization of human periodontal ligament (PDL) stem cells (PDLSCs) from the inflamed PDL tissue: in vitro and in vivo evaluations. J Clin Periodontol 38(8):721–731PubMedCrossRefGoogle Scholar
  36. 36.
    Battula VL, Treml S, Abele H, Bühring HJ (2008) Prospective isolation and characterization of mesenchymal stem cells from human placenta using a frizzled-9-specific monoclonal antibody. Differentiation 76(4):326–336PubMedCrossRefGoogle Scholar
  37. 37.
    Pilz GA, Ulrich C, Ruh M et al (2011) Human term placenta-derived mesenchymal stromal cells are less prone to osteogenic differentiation than bone marrow-derived mesenchymal stromal cells. Stem Cells Dev 20(4):635–646PubMedCrossRefGoogle Scholar
  38. 38.
    Van Landuyt KB, Jones EA, McGonagle D, Luyten FP, Lories RJ (2010) Flow cytometric characterization of freshly isolated and culture expanded human synovial cell populations in patients with chronic arthritis. Arthritis Res Ther 12(1):R15PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Zeddou M, Briquet A, Relic B et al (2010) The umbilical cord matrix is a better source of mesenchymal stem cells (MSC) than the umbilical cord blood. Cell Biol Int 34(7):693–701PubMedCrossRefGoogle Scholar
  40. 40.
    Zhang X, Hirai M, Cantero S et al (2011) Isolation and characterization of mesenchymal stem cells from human umbilical cord blood: reevaluation of critical factors for successful isolation and high ability to proliferate and differentiate to chondrocytes as compared to mesenchymal stem cells from bone marrow and adipose tissue. J Cell Biochem 112(4):1206–1218PubMedCrossRefGoogle Scholar
  41. 41.
    Bühring HJ, Treml S, Cerabona F, de Zwart P, Kanz L, Sobiesiak M (2009) Phenotypic characterization of distinct human bone marrow-derived MSC subsets. Ann N Y Acad Sci 1176:124–134PubMedCrossRefGoogle Scholar
  42. 42.
    Schäffler A, Büchler C (2007) Concise review: adipose tissue-derived stromal cells--basic and clinical implications for novel cell-based therapies. Stem Cells 25(4):818–827PubMedCrossRefGoogle Scholar
  43. 43.
    Martin-Rendon E, Sweeney D, Lu F, Girdlestone J, Navarrete C, Watt SM (2008) 5-Azacytidine-treated human mesenchymal stem/progenitor cells derived from umbilical cord, cord blood and bone marrow do not generate cardiomyocytes in vitro at high frequencies. Vox Sang 95(2):137–148PubMedCrossRefGoogle Scholar
  44. 44.
    Vaculik C, Schuster C, Bauer W et al (2012) Human dermis harbors distinct mesenchymal stromal cell subsets. J Invest Dermatol 132(3 Pt 1):563–574PubMedCrossRefGoogle Scholar
  45. 45.
    Schwab KE, Gargett CE (2007) Co-expression of two perivascular cell markers isolates mesenchymal stem-like cells from human endometrium. Hum Reprod 22(11):2903–2911PubMedCrossRefGoogle Scholar
  46. 46.
    Sorrentino A, Ferracin M, Castelli G et al (2008) Isolation and characterization of CD146+ multipotent mesenchymal stromal cells. Exp Hematol 36(8):1035–1046PubMedCrossRefGoogle Scholar
  47. 47.
    Sacchetti B, Funari A, Michienzi S et al (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131(2):324–336PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Ren G, Zhao X, Zhang L et al (2010) Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression. J Immunol 184(5):2321–2328PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Simmons PJ, Masinovsky B, Longenecker BM, Berenson R, Torok-Storb B, Gallatin WM (1992) Vascular cell adhesion molecule-1 expressed by bone marrow stromal cells mediates the binding of hematopoietic progenitor cells. Blood 80(2):388–395PubMedGoogle Scholar
  50. 50.
    Mabuchi Y, Morikawa S, Harada S et al (2013) LNGFR(+)THY-1(+)VCAM-1(hi+) cells reveal functionally distinct subpopulations in mesenchymal stem cells. Stem Cell Rep 1(2):152–165CrossRefGoogle Scholar
  51. 51.
    Fukiage K, Aoyama T, Shibata KR et al (2008) Expression of vascular cell adhesion molecule-1 indicates the differentiation potential of human bone marrow stromal cells. Biochem Biophys Res Commun 365(3):406–412PubMedCrossRefGoogle Scholar
  52. 52.
    Yang ZX, Han ZB, Ji YR et al (2013) CD106 identifies a subpopulation of mesenchymal stem cells with unique immunomodulatory properties. PLoS One 8(3):e59354PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Du W, Li X, Chi Y et al (2016) VCAM-1+ placenta chorionic villi-derived mesenchymal stem cells display potent pro-angiogenic activity. Stem Cell Res Ther 7:49PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Guérette D, Khan PA, Savard PE, Vincent M (2007) Molecular evolution of type VI intermediate filament proteins. BMC Evol Biol 7:164PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Xie L, Zeng X, Hu J, Chen Q (2015) Characterization of nestin, a selective marker for bone marrow derived mesenchymal stem cells. Stem Cells Int 2015:762098PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Méndez-Ferrer S, Michurina TV, Ferraro F et al (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466(7308):829–834PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Pinho S, Lacombe J, Hanoun M et al (2013) PDGFRα and CD51 mark human nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion. J Exp Med 210(7):1351–1367PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Tran TC, Kimura K, Nagano M et al (2011) Identification of human placenta-derived mesenchymal stem cells involved in re-endothelialization. J Cell Physiol 226(1):224–235PubMedCrossRefGoogle Scholar
  59. 59.
    Lee RH, Seo MJ, Pulin AA, Gregory CA, Ylostalo J, Prockop DJ (2009) The CD34-like protein PODXL and alpha6-integrin (CD49f) identify early progenitor MSCs with increased clonogenicity and migration to infarcted heart in mice. Blood 113(4):816–826PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Martinez C, Hofmann TJ, Marino R, Dominici M, Horwitz EM (2007) Human bone marrow mesenchymal stromal cells express the neural ganglioside GD2: a novel surface marker for the identification of MSCs. Blood 109(10):4245–4248PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Khan WS, Adesida AB, Tew SR, Lowe ET, Hardingham TE (2010) Bone marrow-derived mesenchymal stem cells express the pericyte marker 3G5 in culture and show enhanced chondrogenesis in hypoxic conditions. J Orthop Res 28(6):834–840PubMedGoogle Scholar
  62. 62.
    Gang EJ, Bosnakovski D, Figueiredo CA, Visser JW, Perlingeiro RC (2007) SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood 109(4):1743–1751PubMedCrossRefGoogle Scholar
  63. 63.
    Fotia C, Massa A, Boriani F, Baldini N, Granchi D (2015) Hypoxia enhances proliferation and stemness of human adipose-derived mesenchymal stem cells. Cytotechnology 67(6):1073–1084PubMedCrossRefGoogle Scholar
  64. 64.
    Wang Y, Wu H, Yang Z et al (2014) Human mesenchymal stem cells possess different biological characteristics but do not change their therapeutic potential when cultured in serum free medium. Stem Cell Res Ther 5(6):132PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Lu S, Ge M, Zheng Y et al (2017) CD106 is a novel mediator of bone marrow mesenchymal stem cells via NF-κB in the bone marrow failure of acquired aplastic anemia. Stem Cell Res Ther 8(1):178PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Weiqiang Wang
    • 1
    • 2
    • 3
  • Zhong Chao Han
    • 1
    • 2
    • 3
    • 4
  1. 1.National Engineering Research Center of Cell ProductsTianjin AmCellGene Engineering Co., LtdTianjinChina
  2. 2.Tianjin Institute of Health & Stem Cells, Health & Biotech Co., LtdTianjinChina
  3. 3.Jiangxi Provincial Engineering Technology Research Center of Stem CellJiangxiChina
  4. 4.Beijing Institute of Stem Cells, Health & Biotech Co., Ltd.BeijingChina

Personalised recommendations