Advertisement

Pericytes in the Liver

  • Enis Kostallari
  • Vijay H. ShahEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1122)

Abstract

Liver pericytes, commonly named hepatic stellate cells (HSCs), reside in the space between liver sinusoidal endothelial cells (LSECs) and hepatocytes. They display important roles in health and disease. HSCs ensure the storage of the majority of vitamin A in a healthy body, and they represent the major source of fibrotic tissue in liver disease. Surrounding cells, such as LSECs, hepatocytes, and Kupffer cells, present a significant role in modulating HSC behavior. Therapeutic strategies against liver disease are being currently developed, where HSCs represent an ideal target. In this chapter, we will discuss HSC quiescence and activation in the context of healthy liver and diseases, such as fibrosis, steatohepatitis, and hepatocellular carcinoma.

Keywords

Liver Hepatic stellate cells Pericytes Healthy liver Regeneration Fibrosis NASH NAFLD Hepatocellular carcinoma Hepatocytes Sinusoidal endothelial cells Kupffer cells 

References

  1. (1996) Hepatic stellate cell nomenclature. Hepatology 23:193. No authors listedGoogle Scholar
  2. Amann T, Bataille F, Spruss T, Mühlbauer M, Gäbele E, Schölmerich J, Kiefer P, Bosserhoff AK, Hellerbrand C (2009) Activated hepatic stellate cells promote tumorigenicity of hepatocellular carcinoma. Cancer Sci 100(4):646–653PubMedCrossRefPubMedCentralGoogle Scholar
  3. Asahina K (2012) Hepatic stellate cell progenitor cells. J Gastroenterol Hepatol 27(Suppl 2):80–84PubMedPubMedCentralCrossRefGoogle Scholar
  4. Asahina K, Sato H, Yamasaki C, Kataoka M, Shiokawa M, Katayama S, Tateno C, Yoshizato K (2002) Pleiotrophin/heparin-binding growth-associated molecule as a mitogen of rat hepatocytes and its role in regeneration and development of liver. Am J Pathol 160(6):2191–2205PubMedPubMedCentralCrossRefGoogle Scholar
  5. Asahina K, Tsai SY, Li P, Ishii M, Maxson RE Jr, Sucov HM, Tsukamoto H (2009) Mesenchymal origin of hepatic stellate cells, submesothelial cells, and perivascular mesenchymal cells during mouse liver development. Hepatology 49(3):998–1011PubMedPubMedCentralCrossRefGoogle Scholar
  6. Asahina K, Zhou B, Pu WT, Tsukamoto H (2011) Septum transversum-derived mesothelium gives rise to hepatic stellate cells and perivascular mesenchymal cells in developing mouse liver. Hepatology 53(3):983–995PubMedPubMedCentralCrossRefGoogle Scholar
  7. Azzariti A, Mancarella S, Porcelli L, Quatrale AE, Caligiuri A, Lupo L, Dituri F, Giannelli G (2016) Hepatic stellate cells induce hepatocellular carcinoma cell resistance to sorafenib through the laminin-332/α3 integrin axis recovery of focal adhesion kinase ubiquitination. Hepatology 64(6):2103–2117PubMedCrossRefPubMedCentralGoogle Scholar
  8. Beilfuss A, Sowa JP, Sydor S, Beste M, Bechmann LP, Schlattjan M, Syn WK, Wedemeyer I, Mathé Z, Jochum C, Gerken G, Gieseler RK, Canbay A (2015) Vitamin D counteracts fibrogenic TGF-β signalling in human hepatic stellate cells both receptor-dependently and independently. Gut 64(5):791–799CrossRefGoogle Scholar
  9. Bilzer M, Roggel F, Gerbes AL (2006) Role of Kupffer cells in host defense and liver disease. Liver Int 26(10):1175–1186PubMedCrossRefPubMedCentralGoogle Scholar
  10. Blomhoff R, Green MH, Berg T, Norum KR (1990) Transport and storage of vitamin A. Science 250(4979):399–404PubMedCrossRefPubMedCentralGoogle Scholar
  11. Boers W, Aarrass S, Linthorst C, Pinzani M, Elferink RO, Bosma P (2006) Transcriptional profiling reveals novel markers of liver fibrogenesis: gremlin and insulin-like growth factor-binding proteins. J Biol Chem 281(24):16289–16295PubMedCrossRefPubMedCentralGoogle Scholar
  12. Brunt EM, Gouw AS, Hubscher SG, Tiniakos DG, Bedossa P, Burt AD, Callea F, Clouston AD, Dienes HP, Goodman ZD, Roberts EA, Roskams T, Terracciano L, Torbenson MS, Wanless IR (2014) Pathology of the liver sinusoids. Histopathology 64(7):907–920PubMedCrossRefPubMedCentralGoogle Scholar
  13. Byun JS, Suh YG, Yi HS, Lee YS, Jeong WI (2013) Activation of toll-like receptor 3 attenuates alcoholic liver injury by stimulating Kupffer cells and stellate cells to produce interleukin-10 in mice. J Hepatol 58(2):342–349PubMedCrossRefPubMedCentralGoogle Scholar
  14. Canbay A, Higuchi H, Bronk SF, Taniai M, Sebo TJ, Gores GJ (2002) Fas enhances fibrogenesis in the bile duct ligated mouse: a link between apoptosis and fibrosis. Gastroenterology 123(4):1323–1330PubMedCrossRefPubMedCentralGoogle Scholar
  15. Canbay A, Taimr P, Torok N, Higuchi H, Friedman S, Gores GJ (2003) Apoptotic body engulfment by a human stellate cell line is profibrogenic. Lab Investig 83(5):655–663PubMedCrossRefPubMedCentralGoogle Scholar
  16. Cassiman D, Barlow A, Vander Borght S, Libbrecht L, Pachnis V (2006) Hepatic stellate cells do not derive from the neural crest. J Hepatol 44(6):1098–1104PubMedCrossRefPubMedCentralGoogle Scholar
  17. Chen M, Liu J, Yang W, Ling W (2017) Lipopolysaccharide mediates hepatic stellate cell activation by regulating autophagy and retinoic acid signaling. Autophagy 13(11):1813–1827PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chou MH, Huang YH, Lin TM, Du YY, Tsai PC, Hsieh CS, Chuang JH (2012) Selective activation of toll-like receptor 7 in activated hepatic stellate cells may modulate their profibrogenic phenotype. Biochem J 447(1):25–34PubMedCrossRefPubMedCentralGoogle Scholar
  19. Dangi A, Huang C, Tandon A, Stolz D, Wu T, Gandhi CR (2016) Endotoxin-stimulated rat hepatic stellate cells induce autophagy in hepatocytes as a survival mechanism. J Cell Physiol 231(1):94–105PubMedPubMedCentralCrossRefGoogle Scholar
  20. Das A, Shergill U, Thakur L, Sinha S, Urrutia R, Mukhopadhyay D, Shah VH (2010) Ephrin B2/EphB4 pathway in hepatic stellate cells stimulates Erk-dependent VEGF production and sinusoidal endothelial cell recruitment. Am J Physiol Gastrointest Liver Physiol 298(6):G908–G915PubMedPubMedCentralCrossRefGoogle Scholar
  21. Ding BS, Cao Z, Lis R, Nolan DJ, Guo P, Simons M, Penfold ME, Shido K, Rabbany SY, Rafii S (2014) Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis. Nature 505(7481):97–102PubMedCrossRefPubMedCentralGoogle Scholar
  22. Dou C, Liu Z, Tu K, Zhang H, Chen C, Yaqoob U, Wang Y, Wen J, van Deursen J, Sicard D, Tschumperlin D, Zou H, Huang WC, Urrutia R, Shah VH, Kang N (2018) P300 acetyltransferase mediates stiffness-induced activation of hepatic stellate cells into tumor-promoting myofibroblasts. Gastroenterology 154(8):2209–2221.e14PubMedCrossRefPubMedCentralGoogle Scholar
  23. Drinane MC, Yaqoob U, Yu H, Luo F, Greuter T, Arab JP, Kostallari E, Verma VK, Maiers J, De Assuncao TM, Simons M, Mukhopadhyay D, Kisseleva T, Brenner DA, Urrutia R Lomberk G, Gao Y, Ligresti G, Tschumperlin DJ, Revzin A, Cao S, Shah VH. Synectin promotes fibrogenesis by regulating PDGFR isoforms through distinct mechanisms. JCI Insight. 2017;2(24). pii: 92821Google Scholar
  24. Duran A, Hernandez ED, Reina-Campos M, Castilla EA, Subramaniam S, Raghunandan S, Roberts LR, Kisseleva T, Karin M, Diaz-Meco MT, Moscat J (2016) p62/SQSTM1 by binding to vitamin D receptor inhibits hepatic stellate cell activity, fibrosis, and liver Cancer. Cancer Cell 30(4):595–609PubMedPubMedCentralCrossRefGoogle Scholar
  25. Ferré N, Martínez-Clemente M, López-Parra M, González-Périz A, Horrillo R, Planagumà A, Camps J, Joven J, Tres A, Guardiola F, Bataller R, Arroyo V, Clària J (2009) Increased susceptibility to exacerbated liver injury in hypercholesterolemic ApoE-deficient mice: potential involvement of oxysterols. Am J Physiol Gastrointest Liver Physiol 296(3):G553–G562PubMedCrossRefPubMedCentralGoogle Scholar
  26. Friedman SL (2008) Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 88(1):125–172. https://doi.org/10.1152/physrev.00013.2007CrossRefPubMedPubMedCentralGoogle Scholar
  27. Friedman S, Sanyal A, Goodman Z, Lefebvre E, Gottwald M, Fischer L, Ratziu V (2016) Efficacy and safety study of cenicriviroc for the treatment of non-alcoholic steatohepatitis in adult subjects with liver fibrosis: CENTAUR phase 2b study design. Contemp Clin Trials 47:356–365PubMedCrossRefPubMedCentralGoogle Scholar
  28. Gäbele E, Mühlbauer M, Dorn C, Weiss TS, Froh M, Schnabl B, Wiest R, Schölmerich J, Obermeier F, Hellerbrand C (2008) Role of TLR9 in hepatic stellate cells and experimental liver fibrosis. Biochem Biophys Res Commun 376(2):271–276PubMedCrossRefPubMedCentralGoogle Scholar
  29. Greuter T, Malhi H, Gores GJ, Shah VH. Therapeutic opportunities for alcoholic steatohepatitis and nonalcoholic steatohepatitis: exploiting similarities and differences in pathogenesis. JCI Insight. 2017;2(17). pii: 95354Google Scholar
  30. Guo J, Loke J, Zheng F, Hong F, Yea S, Fukata M, Tarocchi M, Abar OT, Huang H, Sninsky JJ, Friedman SL (2009) Functional linkage of cirrhosis-predictive single nucleotide polymorphisms of toll-like receptor 4 to hepatic stellate cell responses. Hepatology 49(3):960–968PubMedPubMedCentralCrossRefGoogle Scholar
  31. Guvendiren M, Perepelyuk M, Wells RG, Burdick JA (2014) Hydrogels with differential and patterned mechanics to study stiffness-mediated myofibroblastic differentiation of hepatic stellate cells. J Mech Behav Biomed Mater 38:198–208PubMedCrossRefPubMedCentralGoogle Scholar
  32. Hendriks HF, Verhoofstad WA, Brouwer A, de Leeuw AM, Knook DL (1985) Perisinusoidal fat-storing cells are the main vitamin A storage sites in rat liver. Exp Cell Res 160(1):138–149PubMedCrossRefPubMedCentralGoogle Scholar
  33. Huang H, Shiffman ML, Friedman S, Venkatesh R, Bzowej N, Abar OT, Rowland CM, Catanese JJ, Leong DU, Sninsky JJ, Layden TJ, Wright TL, White T, Cheung RC (2007) A 7 gene signature identifies the risk of developing cirrhosis in patients with chronic hepatitis C. Hepatology 46(2):297–306PubMedCrossRefPubMedCentralGoogle Scholar
  34. Ibrahim SH, Hirsova P, Gores GJ (2018) Non-alcoholic steatohepatitis pathogenesis: sublethal hepatocyte injury as a driver of liver inflammation. Gut 67(5):963–972PubMedPubMedCentralCrossRefGoogle Scholar
  35. Ito T, Nemoto M (1952) Kupfer's cells and fat storing cells in the capillary wall of human liver. Okajimas Folia Anat Jpn 24(4):243–258PubMedCrossRefPubMedCentralGoogle Scholar
  36. Jiang JX, Venugopal S, Serizawa N, Chen X, Scott F, Li Y, Adamson R, Devaraj S, Shah V, Gershwin ME, Friedman SL, Török NJ (2010) Reduced nicotinamide adenine dinucleotide phosphate oxidase 2 plays a key role in stellate cell activation and liver fibrogenesis in vivo. Gastroenterology 139(4):1375–1384PubMedPubMedCentralCrossRefGoogle Scholar
  37. Ju MJ, Qiu SJ, Fan J, Xiao YS, Gao Q, Zhou J, Li YW, Tang ZY (2009) Peritumoral activated hepatic stellate cells predict poor clinical outcome in hepatocellular carcinoma after curative resection. Am J Clin Pathol 131(4):498–510PubMedCrossRefPubMedCentralGoogle Scholar
  38. Kang N, Gores GJ, Shah VH (2011) Hepatic stellate cells: partners in crime for liver metastases. Hepatology 54(2):707–713PubMedPubMedCentralCrossRefGoogle Scholar
  39. Kiagiadaki F, Kampa M, Voumvouraki A, Castanas E, Kouroumalis E, Notas G (2018) Activin-a causes hepatic stellate cell activation via the induction of TNFα and TGFβ in Kupffer cells. Biochim Biophys Acta 1864(3):891–899CrossRefGoogle Scholar
  40. Kluwe J, Wongsiriroj N, Troeger JS, Gwak GY, Dapito DH, Pradere JP, Jiang H, Siddiqi M, Piantedosi R, O'Byrne SM, Blaner WS, Schwabe RF (2011) Absence of hepatic stellate cell retinoid lipid droplets does not enhance hepatic fibrosis but decreases hepatic carcinogenesis. Gut 60(9):1260–1268PubMedCrossRefPubMedCentralGoogle Scholar
  41. Kong B, Luyendyk JP, Tawfik O, Guo GL (2009) Farnesoid X receptor deficiency induces nonalcoholic steatohepatitis in low-density lipoprotein receptor-knockout mice fed a high-fat diet. J Pharmacol Exp Ther 328(1):116–122PubMedCrossRefPubMedCentralGoogle Scholar
  42. Kordes C, Häussinger D (2013) Hepatic stem cell niches. J Clin Invest 123(5):1874–1880PubMedPubMedCentralCrossRefGoogle Scholar
  43. Kordes C, Sawitza I, Götze S, Herebian D, Häussinger D (2014) Hepatic stellate cells contribute to progenitor cells and liver regeneration. J Clin Invest 124(12):5503–5515PubMedPubMedCentralCrossRefGoogle Scholar
  44. Kostallari E, Shah VH (2016) Angiocrine signaling in the hepatic sinusoids in health and disease. Am J Physiol Gastrointest Liver Physiol 311(2):G246–G251PubMedPubMedCentralCrossRefGoogle Scholar
  45. Kostallari E, Hirsova P, Prasnicka A, Verma VK, Yaqoob U, Wongjarupong N, Roberts LR, Shah VH (2018) Hepatic stellate cell-derived PDGFRα-enriched extracellular vesicles promote liver fibrosis in mice through SHP2. Hepatology 68:333–348PubMedCrossRefPubMedCentralGoogle Scholar
  46. Kupffer CV (1876) Ueber Sternzellen der Leber. Briefliche Mitteilung an Prof. Waldeyer. Arch Mikr Anat 12:353–358CrossRefGoogle Scholar
  47. Lan T, Li C, Yang G, Sun Y, Zhuang L, Ou Y, Li H, Wang G, Kisseleva T, Brenner D, Guo J (2018) Sphingosine kinase 1 promotes liver fibrosis by preventing miR-19b-3p-mediated inhibition of CCR2. Hepatology 68:1070–1086PubMedPubMedCentralCrossRefGoogle Scholar
  48. Lee YS, Jeong WI (2012) Retinoic acids and hepatic stellate cells in liver disease. J Gastroenterol Hepatol 27(Suppl 2):75–79PubMedCrossRefPubMedCentralGoogle Scholar
  49. Li ZQ, Wu WR, Zhao C, Zhao C, Zhang XL, Yang Z, Pan J, Si WK (2018) CCN1/Cyr61 enhances the function of hepatic stellate cells in promoting the progression of hepatocellular carcinoma. Int J Mol Med 41(3):1518–1528PubMedPubMedCentralGoogle Scholar
  50. Loo CK, Wu XJ (2008) Origin of stellate cells from submesothelial cells in a developing human liver. Liver Int 28(10):1437–1445PubMedCrossRefPubMedCentralGoogle Scholar
  51. Marra F, Romanelli RG, Giannini C, Failli P, Pastacaldi S, Arrighi MC, Pinzani M, Laffi G, Montalto P, Gentilini P (1999) Monocyte chemotactic protein-1 as a chemoattractant for human hepatic stellate cells. Hepatology 29(1):140–148PubMedCrossRefPubMedCentralGoogle Scholar
  52. Mazzocca A, Coppari R, De Franco R, Cho JY, Libermann TA, Pinzani M, Toker A (2005) A secreted form of ADAM9 promotes carcinoma invasion through tumor-stromal interactions. Cancer Res 65(11):4728–4738PubMedCrossRefPubMedCentralGoogle Scholar
  53. Miura K, Yang L, van Rooijen N, Brenner DA, Ohnishi H, Seki E (2013) Toll-like receptor 2 and palmitic acid cooperatively contribute to the development of nonalcoholic steatohepatitis through inflammasome activation in mice. Hepatology 57(2):577–589PubMedPubMedCentralCrossRefGoogle Scholar
  54. Mogler C, König C, Wieland M, Runge A, Besemfelder E, Komljenovic D, Longerich T, Schirmacher P, Augustin HG (2017) Hepatic stellate cells limit hepatocellular carcinoma progression through the orphan receptor endosialin. EMBO Mol Med 9(6):741–749PubMedPubMedCentralCrossRefGoogle Scholar
  55. Musso O, Théret N, Campion JP, Turlin B, Milani S, Grappone C, Clément B (1997) In situ detection of matrix metalloproteinase-2 (MMP2) and the metalloproteinase inhibitor TIMP2 transcripts in human primary hepatocellular carcinoma and in liver metastasis. J Hepatol 26(3):593–605PubMedCrossRefPubMedCentralGoogle Scholar
  56. Nejak-Bowen KN, Orr AV, Bowen WC Jr, Michalopoulos GK (2013) Gliotoxin-induced changes in rat liver regeneration after partial hepatectomy. Liver Int 33(7):1044–1055PubMedPubMedCentralCrossRefGoogle Scholar
  57. Ohata M, Lin M, Satre M, Tsukamoto H (1997) Diminished retinoic acid signaling in hepatic stellate cells in cholestatic liver fibrosis. Am J Phys 272(3 Pt 1):G589–G596Google Scholar
  58. Okabe H, Beppu T, Hayashi H, Horino K, Masuda T, Komori H, Ishikawa S, Watanabe M, Takamori H, Iyama K, Baba H (2009) Hepatic stellate cells may relate to progression of intrahepatic cholangiocarcinoma. Ann Surg Oncol 16(9):2555–2564PubMedCrossRefPubMedCentralGoogle Scholar
  59. Patella S, Phillips DJ, Tchongue J, de Kretser DM, Sievert W (2006) Follistatin attenuates early liver fibrosis: effects on hepatic stellate cell activation and hepatocyte apoptosis. Am J Physiol Gastrointest Liver Physiol 290(1):G137–G144PubMedCrossRefPubMedCentralGoogle Scholar
  60. Pérez-Pomares JM, Carmona R, González-Iriarte M, Macías D, Guadix JA, Muñoz-Chápuli R. (2004) Contribution of mesothelium-derived cells to liver sinusoids in avian embryos. Dev Dyn. Mar;229(3):465–74Google Scholar
  61. Pinzani M, Milani S, De Franco R, Grappone C, Caligiuri A, Gentilini A, Tosti-Guerra C, Maggi M, Failli P, Ruocco C, Gentilini P (1996) Endothelin 1 is overexpressed in human cirrhotic liver and exerts multiple effects on activated hepatic stellate cells. Gastroenterology 110(2):534–548PubMedCrossRefPubMedCentralGoogle Scholar
  62. Popper H (1944) Distribution of vitamin A in tissue as visualized by flourescence microscopy. Physiol Rev 24:205–224CrossRefGoogle Scholar
  63. Povero D, Panera N, Eguchi A, Johnson CD, Papouchado BG, de Araujo Horcel L, Pinatel EM, Alisi A, Nobili V, Feldstein AE (2015) Lipid-induced hepatocyte-derived extracellular vesicles regulate hepatic stellate cell via microRNAs targeting PPAR-γ. Cell Mol Gastroenterol Hepatol 1(6):646–663.e4PubMedPubMedCentralCrossRefGoogle Scholar
  64. Preziosi ME, Monga SP (2017) Update on the mechanisms of liver regeneration. Semin Liver Dis 37(2):141–151PubMedPubMedCentralCrossRefGoogle Scholar
  65. Ramadori G, Rieder H, Theiss F (1989) Meyer zum Büschenfelde KH. Fat-storing (Ito) cells of rat liver synthesize and secrete apolipoproteins: comparison with hepatocytes. Gastroenterology 97(1):163–172PubMedCrossRefPubMedCentralGoogle Scholar
  66. Rangwala F, Guy CD, Lu J, Suzuki A, Burchette JL, Abdelmalek MF, Chen W, Diehl AM (2011) Increased production of sonic hedgehog by ballooned hepatocytes. J Pathol 224(3):401–410PubMedPubMedCentralCrossRefGoogle Scholar
  67. Schuppan D, Ashfaq-Khan M, Yang AT, Kim YO (2018) Liver fibrosis: direct antifibrotic agents and targeted therapies. Matrix Biol 68:435–451. pii: S0945-053X(18)30160-4PubMedCrossRefPubMedCentralGoogle Scholar
  68. Seki E, De Minicis S, Osterreicher CH, Kluwe J, Osawa Y, Brenner DA, Schwabe RF (2007) TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med 13(11):1324–1332PubMedCrossRefPubMedCentralGoogle Scholar
  69. Seki E, de Minicis S, Inokuchi S, Taura K, Miyai K, van Rooijen N, Schwabe RF, Brenner DA (2009) CCR2 promotes hepatic fibrosis in mice. Hepatology 50(1):185–197PubMedPubMedCentralCrossRefGoogle Scholar
  70. Semela D, Das A, Langer D, Kang N, Leof E, Shah V. (2008) Platelet-derived growth factor signaling through ephrin-b2 regulates hepatic vascular structure and function. Gastroenterology. Aug;135(2):671–9Google Scholar
  71. Senoo H (2004) Structure and function of hepatic stellate cells. Med Electron Microsc 37(1):3–15PubMedCrossRefPubMedCentralGoogle Scholar
  72. Shearer AM, Rana R, Austin K, Baleja JD, Nguyen N, Bohm A, Covic L, Kuliopulos A (2016) Targeting liver fibrosis with a cell-penetrating protease-activated Receptor-2 (PAR2) Pepducin. J Biol Chem 291(44):23188–23198PubMedPubMedCentralCrossRefGoogle Scholar
  73. Shimizu H, Tsubota T, Kanki K, Shiota G (2018) All-trans retinoic acid ameliorates hepatic stellate cell activation via suppression of thioredoxin interacting protein expression. J Cell Physiol 233(1):607–616PubMedCrossRefPubMedCentralGoogle Scholar
  74. Staels B, Rubenstrunk A, Noel B, Rigou G, Delataille P, Millatt LJ, Baron M, Lucas A, Tailleux A, Hum DW, Ratziu V, Cariou B, Hanf R (2013) Hepatoprotective effects of the dual peroxisome proliferator-activated receptor alpha/delta agonist, GFT505, in rodent models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Hepatology 58(6):1941–1952CrossRefGoogle Scholar
  75. Suskind DL, Muench MO (2004) Searching for common stem cells of the hepatic and hematopoietic systems in the human fetal liver: CD34+ cytokeratin 7/8+ cells express markers for stellate cells. J Hepatol 40(2):261–268PubMedCrossRefPubMedCentralGoogle Scholar
  76. Taub R (2004) Liver regeneration: from myth to mechanism. Nat Rev Mol Cell Biol 5(10):836–847. ReviewPubMedCrossRefPubMedCentralGoogle Scholar
  77. Taura K, De Minicis S, Seki E, Hatano E, Iwaisako K, Osterreicher CH, Kodama Y, Miura K, Ikai I, Uemoto S, Brenner DA (2008) Hepatic stellate cells secrete angiopoietin 1 that induces angiogenesis in liver fibrosis. Gastroenterology 135(5):1729–1738PubMedCrossRefPubMedCentralGoogle Scholar
  78. Thompson KC, Trowern A, Fowell A, Marathe M, Haycock C, Arthur MJ, Sheron N (1998a) Primary rat and mouse hepatic stellate cells express the macrophage inhibitor cytokine interleukin-10 during the course of activation in vitro. Hepatology 28(6):1518–1524PubMedCrossRefPubMedCentralGoogle Scholar
  79. Thompson K, Maltby J, Fallowfield J, McAulay M, Millward-Sadler H, Sheron N (1998b) Interleukin-10 expression and function in experimental murine liver inflammation and fibrosis. Hepatology 28(6):1597–1606PubMedCrossRefPubMedCentralGoogle Scholar
  80. Toi M, Hayashi Y, Murakami I (2018) Hepatic stellate cells derived from the nestin-positive cells in septum transversum during rat liver development. Med Mol Morphol 51:199–207PubMedCrossRefPubMedCentralGoogle Scholar
  81. Tomita K, Teratani T, Suzuki T, Shimizu M, Sato H, Narimatsu K, Usui S, Furuhashi H, Kimura A, Nishiyama K, Maejima T, Okada Y, Kurihara C, Shimamura K, Ebinuma H, Saito H, Yokoyama H, Watanabe C, Komoto S, Nagao S, Sugiyama K, Aosasa S, Hatsuse K, Yamamoto J, Hibi T, Miura S, Hokari R, Kanai T (2014) Acyl-CoA:cholesterol acyltransferase 1 mediates liver fibrosis by regulating free cholesterol accumulation in hepatic stellate cells. J Hepatol 61(1):98–106PubMedCrossRefPubMedCentralGoogle Scholar
  82. Tsuchida T, Friedman SL (2017) Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol 14(7):397–411PubMedCrossRefPubMedCentralGoogle Scholar
  83. Van Rooyen DM, Gan LT, Yeh MM, Haigh WG, Larter CZ, Ioannou G, Teoh NC, Farrell GC (2013) Pharmacological cholesterol lowering reverses fibrotic NASH in obese, diabetic mice with metabolic syndrome. J Hepatol 59(1):144–152PubMedCrossRefPubMedCentralGoogle Scholar
  84. Vidal-Vanaclocha F (2008) The prometastatic microenvironment of the liver. Cancer Microenviron 1(1):113–129PubMedPubMedCentralCrossRefGoogle Scholar
  85. Wake K (1971) “Sternzellen” in the liver: perisinusoidal cells with special reference to storage of vitamin A. Am J Anat 132(4):429–462PubMedCrossRefPubMedCentralGoogle Scholar
  86. Wake K (1974) Development of vitamin A-rich lipid droplets in multivesicular bodies of rat liver stellate cells. J Cell Biol 63(2 Pt 1):683–691PubMedPubMedCentralCrossRefGoogle Scholar
  87. Wang R, Ding Q, Yaqoob U, de Assuncao TM, Verma VK, Hirsova P, Cao S, Mukhopadhyay D, Huebert RC, Shah VH (2015) Exosome adherence and internalization by hepatic stellate cells triggers sphingosine 1-phosphate-dependent migration. J Biol Chem 290(52):30684–30696PubMedPubMedCentralCrossRefGoogle Scholar
  88. Xia YH, Lu Z, Zhao M, Dai WT, Ding L, Hu LX, Jiang GL (2017) Tumor-specific hepatic stellate cells (tHSCs) induces DIgR2 expression in dendritic cells to inhibit T cells. Oncotarget 8(33):55084–55093PubMedPubMedCentralCrossRefGoogle Scholar
  89. Yang L, Wang Y, Mao H, Fleig S, Omenetti A, Brown KD, Sicklick JK, Li YX, Diehl AM (2008a) Sonic hedgehog is an autocrine viability factor for myofibroblastic hepatic stellate cells. J Hepatol 48(1):98–106PubMedCrossRefPubMedCentralGoogle Scholar
  90. Yang L, Jung Y, Omenetti A, Witek RP, Choi S, Vandongen HM, Huang J, Alpini GD, Diehl AM (2008b) Fate-mapping evidence that hepatic stellate cells are epithelial progenitors in adult mouse livers. Stem Cells 26(8):2104–2113PubMedPubMedCentralCrossRefGoogle Scholar
  91. Yaqoob U, Cao S, Shergill U, Jagavelu K, Geng Z, Yin M, de Assuncao TM, Cao Y, Szabolcs A, Thorgeirsson S, Schwartz M, Yang JD, Ehman R, Roberts L, Mukhopadhyay D, Shah VH (2012) Neuropilin-1 stimulates tumor growth by increasing fibronectin fibril assembly in the tumor microenvironment. Cancer Res 72(16):4047–4059PubMedPubMedCentralCrossRefGoogle Scholar
  92. Yin C, Evason KJ, Maher JJ, Stainier DY (2012) The basic helix-loop-helix transcription factor, heart and neural crest derivatives expressed transcript 2, marks hepatic stellate cells in zebrafish: analysis of stellate cell entry into the developing liver. Hepatology 56(5):1958–1970PubMedPubMedCentralCrossRefGoogle Scholar
  93. Yoneda A, Sakai-Sawada K, Niitsu Y, Tamura Y (2016) Vitamin A and insulin are required for the maintenance of hepatic stellate cell quiescence. Exp Cell Res 341(1):8–17PubMedCrossRefPubMedCentralGoogle Scholar
  94. Zaret KS (2002) Regulatory phases of early liver development: paradigms of organogenesis. Nat Rev Genet 3(7):499–512PubMedCrossRefPubMedCentralGoogle Scholar
  95. Zhao W, Zhang L, Yin Z, Su W, Ren G, Zhou C, You J, Fan J, Wang X (2011) Activated hepatic stellate cells promote hepatocellular carcinoma development in immunocompetent mice. Int J Cancer 129(11):2651–2661PubMedCrossRefPubMedCentralGoogle Scholar
  96. Zhou Z, Xu MJ, Cai Y, Wang W, Jiang JX, Varga ZV, Feng D, Pacher P, Kunos G, Torok NJ, Gao B (2018) Neutrophil-hepatic stellate cell interactions promote fibrosis in experimental steatohepatitis. Cell Mol Gastroenterol Hepatol 5(3):399–413PubMedPubMedCentralCrossRefGoogle Scholar
  97. Zhu B, Lin N, Zhang M, Zhu Y, Cheng H, Chen S, Ling Y, Pan W, Xu R (2015) Activated hepatic stellate cells promote angiogenesis via interleukin-8 in hepatocellular carcinoma. J Transl Med 13:365PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Division of Gastroenterology and HepatologyMayo ClinicRochesterUSA

Personalised recommendations