Advertisement

Cochlear Capillary Pericytes

  • Martin Canis
  • Mattis BertlichEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1122)

Abstract

Capillary pericytes in the cochlea of mammals are—compared to pericytes in other tissues, like the CNS—relatively poorly researched. To begin with, there is still a considerable debate as to whether the very last precapillary arterioles should—due to their contractile properties—may be considered to be pericytes.

However, cochlear capillary pericytes have shifted into the center of attention in the past decade. Most mammals show a considerable number of pericytes in the stria vascularis of the cochlea—up to 1300 in a mouse alone. This high number may be explained by the observation that cochlear capillary pericytes may be differentiated into different subgroups, depending on the immune markers that are expressed by them. Corresponding with these subpopulations, cochlear pericytes fulfill three core functions in the physiology of the cochlea:
  • Formation of the intrastrial blood-fluid barrier—Pericytes monitor the ion, fluid, and nutrient household and aid in the homeostasis thereof.

  • Regulation of cochlear blood flow—By contraction on relaxation, pericytes contribute to the regulation of cochlear blood flow, a paramount function parameter of the cochlea.

  • Immune response—Pericytes actually contribute to the immune response in inflammation of the cochlea.

Due to these central roles in the physiology of the cochlea, pericytes actually play a major role in numerous cochlear pathologies, including, but not limited to, sudden sensorineural hearing loss, acoustic trauma, and inflammation of the cochlea.

Keywords

Capillary pericytes Cochlea Cochlear blood flow Cochlear blood flow regulation Strial blood-fluid barrier Immune response Fluid homeostasis Cochlear pathology 

References

  1. Arpornchayanon W, Canis M, Ihler F, Settevendemie C, Strieth S (2013) TNF-alpha inhibition using etanercept prevents noise-induced hearing loss by improvement of cochlear blood flow in vivo. Int J Audiol 52:545–552. https://doi.org/10.3109/14992027.2013.790564CrossRefPubMedGoogle Scholar
  2. Attwell D, Mishra A, Hall CN, O’Farrell FM, Dalkara T (2016) What is a pericyte? J Cereb Blood Flow Metab 36:451–455CrossRefGoogle Scholar
  3. Bertlich M, Ihler F, Sharaf K, Weiss BG, Strupp M, Canis M (2014) Betahistine metabolites, Aminoethylpyridine, and Hydroxyethylpyridine increase cochlear blood flow in Guinea pigs in vivo. Int J Audiol 53:753–759. http://www.ncbi.nlm.nih.gov/pubmed/25014609CrossRefGoogle Scholar
  4. Bertlich M, Ihler F, Weiss BG, Freytag S, Strupp M, Canis M (2017a) Cochlear Pericytes are capable of reversibly decreasing capillary diameter in vivo after tumor necrosis factor exposure. Otol Neurotol 38:e545–e550CrossRefGoogle Scholar
  5. Bertlich M, Ihler F, Weiss BG, Freytag S, Jakob M, Strupp M et al (2017b) Fingolimod (FTY-720) is capable of reversing tumor necrosis factor induced decreases in Cochlear blood flow. Otol Neurotol 38:1213–1216CrossRefGoogle Scholar
  6. Bertlich M, Ihler F, Weiss BG, Freytag S, Strupp M, Jakob M et al (2017c) Role of capillary pericytes and precapillary arterioles in the vascular mechanism of betahistine in a Guinea pig inner ear model. Life Sci 187:17–21CrossRefGoogle Scholar
  7. Buckiova D, Ranjan S, Newman TA, Johnston AH, Sood R, Kinnunen PKJ et al (2012) Minimally invasive drug delivery to the cochlea through application of nanoparticles to the round window membrane. Nanomedicine (Lond) 7:1339–1354CrossRefGoogle Scholar
  8. Dai M, Nuttall A, Yang Y, Shi X (2009) Visualization and contractile activity of cochlear pericytes in the capillaries of the spiral ligament. Hear Res 254:100–107CrossRefGoogle Scholar
  9. Dore-Duffy P, Owen C, Balabanov R, Murphy S, Beaumont T, Rafols JA (2000) Pericyte migration from the vascular wall in response to traumatic brain injury. Microvasc Res 60:55–69CrossRefGoogle Scholar
  10. Fernandez-Klett F, Offenhauser N, Dirnagl U, Priller J, Lindauer U (2010) Pericytes in capillaries are contractile in vivo, but arterioles mediate functional hyperemia in the mouse brain. Proc Natl Acad Sci U S A 107:22290–22295CrossRefGoogle Scholar
  11. Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA et al (2014) Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508:55–60. https://doi.org/10.1038/nature13165CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hill RA, Tong L, Yuan P, Murikinati S, Gupta S, Grutzendler J (2015) Regional blood flow in the Normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary Pericytes. Neuron 87:95–110CrossRefGoogle Scholar
  13. Ihler F, Strieth S, Pieri N, Gohring P, Canis M (2012a) Acute hyperfibrinogenemia impairs cochlear blood flow and hearing function in Guinea pigs in vivo. Int J Audiol 51:210–215. https://doi.org/10.3109/14992027.2011.622302CrossRefPubMedGoogle Scholar
  14. Ihler F, Bertlich M, Sharaf K, Strieth S, Strupp M, Canis M (2012b) Betahistine exerts a dose-dependent effect on cochlear stria vascularis blood flow in Guinea pigs in vivo. PLoS One 7:e39086CrossRefGoogle Scholar
  15. Ihler F, Sharaf K, Bertlich M, Strieth S, Reichel CA, Berghaus A et al (2013) Etanercept prevents decrease of cochlear blood flow dose-dependently caused by tumor necrosis factor alpha. Ann Otol Rhinol Laryngol 122:468–473CrossRefGoogle Scholar
  16. Ihler F, Pelz S, Coors M, Matthias C, Canis M (2014) Application of a TNF-alpha-inhibitor into the scala tympany after cochlear electrode insertion trauma in Guinea pigs: preliminary audiologic results. Int J Audiol 53:810–816. https://doi.org/10.3109/14992027.2014.938369CrossRefPubMedGoogle Scholar
  17. Ishihara H, Kariya S, Okano M, Zhao P, Maeda Y, Nishizaki K (2016) Expression of macrophage migration inhibitory factor and CD74 in the inner ear and middle ear in lipopolysaccharide-induced otitis media. Acta Otolaryngol 136:1011–1016CrossRefGoogle Scholar
  18. Jeong H-J, Kim S-J, Moon P-D, Kim N-H, Kim J-S, Park R-K et al (2007) Antiapoptotic mechanism of cannabinoid receptor 2 agonist on cisplatin-induced apoptosis in the HEI-OC1 auditory cell line. J Neurosci Res 85:896–905CrossRefGoogle Scholar
  19. Juhn SK, Hunter BA, Odland RM (2001) Blood-labyrinth barrier and fluid dynamics of the inner ear. Int Tinnitus J 7:72–83PubMedGoogle Scholar
  20. Lamm K, Arnold W (2000) The effect of blood flow promoting drugs on cochlear blood flow, perilymphatic pO(2) and auditory function in the normal and noise-damaged hypoxic and ischemic Guinea pig inner ear. Hear Res 141:199–219CrossRefGoogle Scholar
  21. Mujica-Mota MA, Lehnert S, Devic S, Gasbarrino K, Daniel SJ (2014) Mechanisms of radiation-induced sensorineural hearing loss and radioprotection. Hear Res 312:60–68CrossRefGoogle Scholar
  22. Nakashima T, Naganawa S, Sone M, Tominaga M, Hayashi H, Yamamoto H et al (2003) Disorders of cochlear blood flow. Brain Res Brain Res Rev 43:17–28CrossRefGoogle Scholar
  23. Neng L, Zhang J, Yang J, Zhang F, Lopez IA, Dong M et al (2015) Structural changes in thestrial blood-labyrinth barrier of aged C57BL/6 mice. Cell Tissue Res 361:685–696CrossRefGoogle Scholar
  24. Peppiatt CM, Howarth C, Mobbs P, Attwell D (2006) Bidirectional control of CNS capillary diameter by pericytes. Nature 443:700–704CrossRefGoogle Scholar
  25. Pfister F, Feng Y, vom Hagen F, Hoffmann S, Molema G, Hillebrands J-L et al (2008) Pericyte migration: a novel mechanism of pericyte loss in experimental diabetic retinopathy. Diabetes 57:2495–2502CrossRefGoogle Scholar
  26. Roland PS, Wright CG (2006) Surgical aspects of cochlear implantation: mechanisms of insertional trauma. Adv Otorhinolaryngol 64:11–30PubMedGoogle Scholar
  27. Sharaf K, Ihler F, Bertlich M, Reichel CA, Berghaus A, Canis M (2016) Tumor necrosis factor-induced decrease of Cochlear blood flow can be reversed by Etanercept or JTE-013. Otol Neurotol 37:e203–e208CrossRefGoogle Scholar
  28. Sheth S, Mukherjea D, Rybak LP, Ramkumar V (2017) Mechanisms of Cisplatin-induced ototoxicity and Otoprotection. Front Cell Neurosci 11:338CrossRefGoogle Scholar
  29. Shi X (2009) Cochlear pericyte responses to acoustic trauma and the involvement of hypoxia-inducible factor-1alpha and vascular endothelial growth factor. Am J Pathol 174:1692–1704CrossRefGoogle Scholar
  30. Shi X (2011) Physiopathology of the cochlear microcirculation. Hear Res 282:10–24CrossRefGoogle Scholar
  31. Shi X (2016) Pathophysiology of the cochlear intrastrial fluid-blood barrier (review). Hear Res 338:52–63CrossRefGoogle Scholar
  32. Shi X, Han W, Yamamoto H, Tang W, Lin X, Xiu R et al (2008) The cochlear pericytes. Microcirculation 15:515–529CrossRefGoogle Scholar
  33. Suckfull M (2002) Fibrinogen and LDL apheresis in treatment of sudden hearing loss: a randomised multicentre trial. Lancet (London, England) 360:1811–1817CrossRefGoogle Scholar
  34. Wang JT, Wang AY, Psarros C, Da Cruz M (2014) Rates of revision and device failure in cochlear implant surgery: a 30-year experience. Laryngoscope 124:2393–2399CrossRefGoogle Scholar
  35. Weiss BG, Bertlich M, Bettag SA, Desinger H, Ihler F, Canis M (2017) Drug-induced Defibrinogenation as new treatment approach of acute hearing loss in an animal model for inner ear vascular impairment. Otol Neurotol 38:648–654CrossRefGoogle Scholar
  36. Zhang F, Zhang J, Neng L, Shi X (2013) Characterization and inflammatory response of perivascular-resident macrophage-like melanocytes in the vestibular system. J Assoc Res Otolaryngol 14:635–643CrossRefGoogle Scholar
  37. Zhang J, Chen S, Hou Z, Cai J, Dong M, Shi X (2015) Lipopolysaccharide-induced middle ear inflammation disrupts the cochlear intra-strial fluid-blood barrier through down-regulation of tight junction proteins. PLoS One 10:e0122572CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.The Department of Otorhinolaryngology, Head and Neck SurgeryUniversity HospitalMunichGermany

Personalised recommendations