Advertisement

Pericytes in Skeletal Muscle

  • Jyoti Gautam
  • Yao YaoEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1122)

Abstract

Skeletal muscle regeneration is a highly orchestrated process and involves the activation of many cellular and molecular pathways. Although satellite cells (SCs) are the major cell type responsible for muscle regeneration, pericytes show remarkable myogenic potential and various advantages as cell therapy in muscular disorders. This chapter first introduces the structure, marker expression, origin, and category of pericytes. Next, we discuss their functions in muscular dystrophy and/or muscle injuries, focusing on their myogenic, adipogenic, fibrogenic, chondrogenic, and osteogenic activities. Understanding this knowledge will promote the development of innovative cell therapies for muscle disorders, including muscular dystrophy.

Keywords

Pericytes Satellite cells Mesoangioblasts Myogenesis Adipogenesis Fibrosis Chondrogenesis Osteogenesis Ossification Muscle injury Muscular dystrophy Muscle regeneration Differentiation 

References

  1. Acuna MJ et al (2014) Restoration of muscle strength in dystrophic muscle by angiotensin-1-7 through inhibition of TGF-beta signalling. Hum Mol Genet 23(5):1237–1249PubMedCrossRefGoogle Scholar
  2. Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97(6):512–523PubMedCrossRefPubMedCentralGoogle Scholar
  3. Armulik A, Genove G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21(2):193–215PubMedCrossRefGoogle Scholar
  4. Asahina K et al (2011) Septum transversum-derived mesothelium gives rise to hepatic stellate cells and perivascular mesenchymal cells in developing mouse liver. Hepatology 53(3):983–995PubMedPubMedCentralCrossRefGoogle Scholar
  5. Asakura A et al (2002) Myogenic specification of side population cells in skeletal muscle. J Cell Biol 159(1):123–134PubMedPubMedCentralCrossRefGoogle Scholar
  6. Attwell D et al (2016) What is a pericyte? J Cereb Blood Flow Metab 36(2):451–455PubMedCrossRefGoogle Scholar
  7. Beauchamp JR et al (1999) Dynamics of myoblast transplantation reveal a discrete minority of precursors with stem cell-like properties as the myogenic source. J Cell Biol 144(6):1113–1122PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bergwerff M et al (1998) Neural crest cell contribution to the developing circulatory system: implications for vascular morphology? Circ Res 82(2):221–231PubMedCrossRefGoogle Scholar
  9. Berry SE et al (2007) Multipotential mesoangioblast stem cell therapy in the mdx/utrn−/− mouse model for Duchenne muscular dystrophy. Regen Med 2(3):275–288PubMedCrossRefGoogle Scholar
  10. Birbrair A et al (2011) Nestin-GFP transgene reveals neural precursor cells in adult skeletal muscle. PLoS One 6(2):e16816PubMedPubMedCentralCrossRefGoogle Scholar
  11. Birbrair A et al (2013a) Skeletal muscle pericyte subtypes differ in their differentiation potential. Stem Cell Res 10(1):67–84PubMedCrossRefGoogle Scholar
  12. Birbrair A et al (2013b) Role of pericytes in skeletal muscle regeneration and fat accumulation. Stem Cells Dev 22(16):2298–2314PubMedPubMedCentralCrossRefGoogle Scholar
  13. Birbrair A et al (2013c) Type-1 pericytes participate in fibrous tissue deposition in aged skeletal muscle. Am J Physiol Cell Physiol 305(11):C1098–C1113PubMedPubMedCentralCrossRefGoogle Scholar
  14. Birbrair A et al (2014a) Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner. Stem Cell Res Ther 5(6):122PubMedPubMedCentralCrossRefGoogle Scholar
  15. Birbrair A et al (2014b) Type-2 pericytes participate in normal and tumoral angiogenesis. Am J Physiol Cell Physiol 307(1):C25–C38PubMedPubMedCentralCrossRefGoogle Scholar
  16. Birbrair A et al (2014c) Pericytes: multitasking cells in the regeneration of injured, diseased, and aged skeletal muscle. Front Aging Neurosci 6:245PubMedPubMedCentralCrossRefGoogle Scholar
  17. Blau HM, Webster C, Pavlath GK (1983) Defective myoblasts identified in Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 80(15):4856–4860PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bodnar RJ et al (2016) Pericytes: a newly recognized player in wound healing. Wound Repair Regen 24(2):204–214PubMedPubMedCentralCrossRefGoogle Scholar
  19. Boldrin L et al (2009) Mature adult dystrophic mouse muscle environment does not impede efficient engrafted satellite cell regeneration and self-renewal. Stem Cells 27(10):2478–2487PubMedCrossRefGoogle Scholar
  20. Bonfanti C et al (2015) PW1/Peg3 expression regulates key properties that determine mesoangioblast stem cell competence. Nat Commun 6:6364PubMedPubMedCentralCrossRefGoogle Scholar
  21. Bosse A et al (1994) Collagens and growth factors in heterotopic ossification. Pathologe 15(4):216–225PubMedCrossRefPubMedCentralGoogle Scholar
  22. Cappellari O, Cossu G (2013) Pericytes in development and pathology of skeletal muscle. Circ Res 113(3):341–347PubMedCrossRefGoogle Scholar
  23. Carlson BM (1981) Denervation, reinnervation, and regeneration of skeletal muscle. Otolaryngol Head Neck Surg 89(2):192–196PubMedCrossRefGoogle Scholar
  24. Chen G, Deng C, Li YP (2012) TGF-beta and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci 8(2):272–288PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chen L et al (2016) Smooth muscle-alpha actin inhibits vascular smooth muscle cell proliferation and migration by inhibiting Rac1 activity. PLoS One 11(5):e0155726PubMedPubMedCentralCrossRefGoogle Scholar
  26. Chen J et al (2017) CD146 coordinates brain endothelial cell-pericyte communication for blood-brain barrier development. Proc Natl Acad Sci U S A 114(36):E7622–E7631PubMedPubMedCentralCrossRefGoogle Scholar
  27. Collins CA et al (2005) Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122(2):289–301PubMedCrossRefGoogle Scholar
  28. Cossu G et al (2015) Intra-arterial transplantation of HLA-matched donor mesoangioblasts in Duchenne muscular dystrophy. EMBO Mol Med 7(12):1513–1528PubMedPubMedCentralCrossRefGoogle Scholar
  29. Costamagna D et al (2016) Smad1/5/8 are myogenic regulators of murine and human mesoangioblasts. J Mol Cell Biol 8(1):73–87PubMedCrossRefGoogle Scholar
  30. Crisan M et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3(3):301–313PubMedCrossRefGoogle Scholar
  31. Daneman R, Prat A (2015) The blood-brain barrier. Cold Spring Harb Perspect Biol 7(1):a020412PubMedPubMedCentralCrossRefGoogle Scholar
  32. Dar A et al (2012) Multipotent vasculogenic pericytes from human pluripotent stem cells promote recovery of murine ischemic limb. Circulation 125(1):87–99PubMedCrossRefGoogle Scholar
  33. Deconinck AE et al (1997) Utrophin-dystrophin-deficient mice as a model for Duchenne muscular dystrophy. Cell 90(4):717–727PubMedCrossRefPubMedCentralGoogle Scholar
  34. Delbono O (2003) Neural control of aging skeletal muscle. Aging Cell 2(1):21–29PubMedCrossRefPubMedCentralGoogle Scholar
  35. Delbono O (2011) Expression and regulation of excitation-contraction coupling proteins in aging skeletal muscle. Curr Aging Sci 4(3):248–259PubMedCrossRefPubMedCentralGoogle Scholar
  36. Dellavalle A et al (2007) Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat Cell Biol 9(3):255–267PubMedCrossRefGoogle Scholar
  37. Dellavalle A et al (2011) Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells. Nat Commun 2:499PubMedCrossRefGoogle Scholar
  38. Duffield JS et al (2013) Host responses in tissue repair and fibrosis. Annu Rev Pathol 8:241–276PubMedCrossRefPubMedCentralGoogle Scholar
  39. Dulauroy S et al (2012) Lineage tracing and genetic ablation of ADAM12(+) perivascular cells identify a major source of profibrotic cells during acute tissue injury. Nat Med 18(8):1262–1270PubMedCrossRefPubMedCentralGoogle Scholar
  40. Dumont NA et al (2015) Satellite cells and skeletal muscle regeneration. Compr Physiol 5(3):1027–1059PubMedCrossRefPubMedCentralGoogle Scholar
  41. Etchevers HC et al (2001) The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain. Development 128(7):1059–1068PubMedGoogle Scholar
  42. Fan Y et al (1996) Rapid death of injected myoblasts in myoblast transfer therapy. Muscle Nerve 19(7):853–860PubMedCrossRefPubMedCentralGoogle Scholar
  43. Farrington-Rock C et al (2004) Chondrogenic and adipogenic potential of microvascular pericytes. Circulation 110(15):2226–2232PubMedCrossRefPubMedCentralGoogle Scholar
  44. Foster K et al (2008) Contribution of neural crest-derived cells in the embryonic and adult thymus. J Immunol 180(5):3183–3189PubMedCrossRefPubMedCentralGoogle Scholar
  45. Galvez BG et al (2006) Complete repair of dystrophic skeletal muscle by mesoangioblasts with enhanced migration ability. J Cell Biol 174(2):231–243PubMedPubMedCentralCrossRefGoogle Scholar
  46. Gannon FH et al (1997) Bone morphogenetic protein 2/4 in early fibromatous lesions of fibrodysplasia ossificans progressiva. Hum Pathol 28(3):339–343PubMedCrossRefPubMedCentralGoogle Scholar
  47. Gautam J, Nirwane A, Yao Y (2017) Laminin differentially regulates the stemness of type I and type II pericytes. Stem Cell Res Ther 8(1):28PubMedPubMedCentralCrossRefGoogle Scholar
  48. Gilbert PM et al (2010) Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329(5995):1078–1081PubMedPubMedCentralCrossRefGoogle Scholar
  49. Goritz C et al (2011) A pericyte origin of spinal cord scar tissue. Science 333(6039):238–242PubMedCrossRefPubMedCentralGoogle Scholar
  50. Grady RM et al (1997) Skeletal and cardiac myopathies in mice lacking utrophin and dystrophin: a model for Duchenne muscular dystrophy. Cell 90(4):729–738PubMedCrossRefGoogle Scholar
  51. Grenier G et al (2013) BMP-9 expression in human traumatic heterotopic ossification: a case report. Skelet Muscle 3(1):29PubMedPubMedCentralCrossRefGoogle Scholar
  52. Hashimoto N et al (2004) Muscle reconstitution by muscle satellite cell descendants with stem cell-like properties. Development 131(21):5481–5490PubMedCrossRefGoogle Scholar
  53. Hellstrom M et al (1999) Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126(14):3047–3055PubMedGoogle Scholar
  54. Heslop L, Morgan JE, Partridge TA (2000) Evidence for a myogenic stem cell that is exhausted in dystrophic muscle. J Cell Sci 113(Pt 12):2299–2308PubMedGoogle Scholar
  55. Humphreys BD et al (2010) Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 176(1):85–97PubMedPubMedCentralCrossRefGoogle Scholar
  56. James AW et al (2012) Perivascular stem cells: a prospectively purified mesenchymal stem cell population for bone tissue engineering. Stem Cells Transl Med 1(6):510–519PubMedPubMedCentralCrossRefGoogle Scholar
  57. Jin S et al (2008) Notch signaling regulates platelet-derived growth factor receptor-beta expression in vascular smooth muscle cells. Circ Res 102(12):1483–1491PubMedCrossRefPubMedCentralGoogle Scholar
  58. Juhas M, Bursac N (2013) Engineering skeletal muscle repair. Curr Opin Biotechnol 24(5):880–886PubMedPubMedCentralCrossRefGoogle Scholar
  59. Korn J, Christ B, Kurz H (2002) Neuroectodermal origin of brain pericytes and vascular smooth muscle cells. J Comp Neurol 442(1):78–88PubMedCrossRefPubMedCentralGoogle Scholar
  60. Kostallari E et al (2015) Pericytes in the myovascular niche promote post-natal myofiber growth and satellite cell quiescence. Development 142(7):1242–1253PubMedCrossRefGoogle Scholar
  61. Kragstrup TW, Kjaer M, Mackey AL (2011) Structural, biochemical, cellular, and functional changes in skeletal muscle extracellular matrix with aging. Scand J Med Sci Sports 21(6):749–757PubMedCrossRefGoogle Scholar
  62. Krueger M, Bechmann I (2010) CNS pericytes: concepts, misconceptions, and a way out. Glia 58(1):1–10PubMedCrossRefGoogle Scholar
  63. Kumar A et al (2017) Specification and diversification of Pericytes and smooth muscle cells from Mesenchymoangioblasts. Cell Rep 19(9):1902–1916PubMedPubMedCentralCrossRefGoogle Scholar
  64. Levy MM et al (2001) Osteoprogenitor cells of mature human skeletal muscle tissue: an in vitro study. Bone 29(4):317–322PubMedCrossRefGoogle Scholar
  65. Lin SL et al (2008) Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am J Pathol 173(6):1617–1627PubMedPubMedCentralCrossRefGoogle Scholar
  66. Love FM, Thompson WJ (1999) Glial cells promote muscle reinnervation by responding to activity-dependent postsynaptic signals. J Neurosci 19(23):10390–10396PubMedCrossRefGoogle Scholar
  67. Lukjanenko L et al (2013) Genomic profiling reveals that transient adipogenic activation is a hallmark of mouse models of skeletal muscle regeneration. PLoS One 8(8):e71084PubMedPubMedCentralCrossRefGoogle Scholar
  68. Majesky MW (2007) Developmental basis of vascular smooth muscle diversity. Arterioscler Thromb Vasc Biol 27(6):1248–1258PubMedCrossRefGoogle Scholar
  69. Majesky MW et al (2011) Vascular smooth muscle progenitor cells: building and repairing blood vessels. Circ Res 108(3):365–377PubMedPubMedCentralCrossRefGoogle Scholar
  70. Mann CJ et al (2011) Aberrant repair and fibrosis development in skeletal muscle. Skelet Muscle 1(1):21PubMedPubMedCentralCrossRefGoogle Scholar
  71. Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495PubMedPubMedCentralCrossRefGoogle Scholar
  72. Miller SR, Perera SN, Baker CV (2017) Constitutively active Notch1 converts cranial neural crest-derived frontonasal mesenchyme to perivascular cells in vivo. Biol Open 6(3):317–325PubMedPubMedCentralCrossRefGoogle Scholar
  73. Montarras D et al (2005) Direct isolation of satellite cells for skeletal muscle regeneration. Science 309(5743):2064–2067PubMedCrossRefGoogle Scholar
  74. Morales MG et al (2013) Reducing CTGF/CCN2 slows down mdx muscle dystrophy and improves cell therapy. Hum Mol Genet 22(24):4938–4951PubMedCrossRefGoogle Scholar
  75. Moransard M et al (2011) NG2 expressed by macrophages and oligodendrocyte precursor cells is dispensable in experimental autoimmune encephalomyelitis. Brain 134(Pt 5):1315–1330PubMedCrossRefGoogle Scholar
  76. Motohashi N et al (2008) Muscle CD31(−) CD45(−) side population cells promote muscle regeneration by stimulating proliferation and migration of myoblasts. Am J Pathol 173(3):781–791PubMedPubMedCentralCrossRefGoogle Scholar
  77. Muir AR, Kanji AH, Allbrook D (1965) The structure of the satellite cells in skeletal muscle. J Anat 99(Pt 3):435–444PubMedPubMedCentralGoogle Scholar
  78. Muller SM et al (2008) Neural crest origin of perivascular mesenchyme in the adult thymus. J Immunol 180(8):5344–5351PubMedCrossRefGoogle Scholar
  79. Negroni E et al (2009) In vivo myogenic potential of human CD133+ muscle-derived stem cells: a quantitative study. Mol Ther 17(10):1771–1778PubMedPubMedCentralCrossRefGoogle Scholar
  80. Nehls V, Drenckhahn D (1991) Heterogeneity of microvascular pericytes for smooth muscle type alpha-actin. J Cell Biol 113(1):147–154PubMedCrossRefGoogle Scholar
  81. Neradil J, Veselska R (2015) Nestin as a marker of cancer stem cells. Cancer Sci 106(7):803–811PubMedPubMedCentralCrossRefGoogle Scholar
  82. Nishimura R et al (2012) Regulation of bone and cartilage development by network between BMP signalling and transcription factors. J Biochem 151(3):247–254PubMedCrossRefGoogle Scholar
  83. Owens GK, Kumar MS, Wamhoff BR (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84(3):767–801PubMedCrossRefGoogle Scholar
  84. Pagano AF et al (2015) Muscle regeneration with intermuscular adipose tissue (IMAT) accumulation is modulated by mechanical constraints. PLoS One 10(12):e0144230PubMedPubMedCentralCrossRefGoogle Scholar
  85. Peault B et al (2007) Stem and progenitor cells in skeletal muscle development, maintenance, and therapy. Mol Ther 15(5):867–877PubMedCrossRefGoogle Scholar
  86. Pierantozzi E et al (2016) Tissue-specific cultured human Pericytes: perivascular cells from smooth muscle tissue have restricted mesodermal differentiation ability. Stem Cells Dev 25(9):674–686PubMedPubMedCentralCrossRefGoogle Scholar
  87. Polito A, Reynolds R (2005) NG2-expressing cells as oligodendrocyte progenitors in the normal and demyelinated adult central nervous system. J Anat 207(6):707–716PubMedPubMedCentralCrossRefGoogle Scholar
  88. Quan TE, Cowper SE, Bucala R (2006) The role of circulating fibrocytes in fibrosis. Curr Rheumatol Rep 8(2):145–150PubMedCrossRefGoogle Scholar
  89. Quattrocelli M et al (2014) Notch signaling regulates myogenic regenerative capacity of murine and human mesoangioblasts. Cell Death Dis 5:e1448PubMedPubMedCentralCrossRefGoogle Scholar
  90. Que J et al (2008) Mesothelium contributes to vascular smooth muscle and mesenchyme during lung development. Proc Natl Acad Sci U S A 105(43):16626–16630PubMedPubMedCentralCrossRefGoogle Scholar
  91. Ramirez DM et al (2014) Molecular and cellular mechanisms of heterotopic ossification. Histol Histopathol 29(10):1281–1285PubMedPubMedCentralGoogle Scholar
  92. Relaix F, Zammit PS (2012) Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage. Development 139(16):2845–2856PubMedCrossRefGoogle Scholar
  93. Ryall JG, Schertzer JD, Lynch GS (2008) Cellular and molecular mechanisms underlying age-related skeletal muscle wasting and weakness. Biogerontology 9(4):213–228PubMedCrossRefGoogle Scholar
  94. Sacco A et al (2008) Self-renewal and expansion of single transplanted muscle stem cells. Nature 456(7221):502–506PubMedPubMedCentralCrossRefGoogle Scholar
  95. Sampaolesi M et al (2003) Cell therapy of alpha-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science 301(5632):487–492PubMedCrossRefGoogle Scholar
  96. Sampaolesi M et al (2006) Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 444(7119):574–579PubMedCrossRefGoogle Scholar
  97. Shepro D, Morel NM (1993) Pericyte physiology. FASEB J 7(11):1031–1038PubMedCrossRefPubMedCentralGoogle Scholar
  98. Shimono K et al (2013) The pathophysiology of heterotopic ossification: current treatment considerations in dentistry. Jpn Dent Sci Rev 50:1–8CrossRefGoogle Scholar
  99. Shore EM, Kaplan FS (2010) Inherited human diseases of heterotopic bone formation. Nat Rev Rheumatol 6(9):518–527PubMedPubMedCentralCrossRefGoogle Scholar
  100. Shore EM et al (2006) A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nat Genet 38(5):525–527PubMedCrossRefPubMedCentralGoogle Scholar
  101. Silini A et al (2012) Regulator of G-protein signaling 5 (RGS5) protein: a novel marker of cancer vasculature elicited and sustained by the tumor’s proangiogenic microenvironment. Cell Mol Life Sci 69(7):1167–1178PubMedCrossRefPubMedCentralGoogle Scholar
  102. Sims DE (1986) The pericyte—a review. Tissue Cell 18(2):153–174PubMedCrossRefPubMedCentralGoogle Scholar
  103. Sims D et al (1994) Heterogeneity of pericyte populations in equine skeletal muscle and dermal microvessels: a quantitative study. Anat Histol Embryol 23(3):232–238PubMedCrossRefPubMedCentralGoogle Scholar
  104. Sugiura Y, Lin W (2011) Neuron-glia interactions: the roles of Schwann cells in neuromuscular synapse formation and function. Biosci Rep 31(5):295–302PubMedPubMedCentralCrossRefGoogle Scholar
  105. Suzuki S et al (2010) The neural stem/progenitor cell marker nestin is expressed in proliferative endothelial cells, but not in mature vasculature. J Histochem Cytochem 58(8):721–730PubMedPubMedCentralCrossRefGoogle Scholar
  106. Takegahara Y et al (2014) Myotube formation is affected by adipogenic lineage cells in a cell-to-cell contact-independent manner. Exp Cell Res 324(1):105–114PubMedCrossRefPubMedCentralGoogle Scholar
  107. Ten Broek RW, Grefte S, Von den Hoff JW (2010) Regulatory factors and cell populations involved in skeletal muscle regeneration. J Cell Physiol 224(1):7–16PubMedPubMedCentralGoogle Scholar
  108. Thompson LV (2009) Age-related muscle dysfunction. Exp Gerontol 44(1–2):106–111PubMedCrossRefPubMedCentralGoogle Scholar
  109. Tilton RG, Kilo C, Williamson JR (1979) Pericyte-endothelial relationships in cardiac and skeletal muscle capillaries. Microvasc Res 18(3):325–335PubMedCrossRefPubMedCentralGoogle Scholar
  110. Torrente Y et al (2004) Human circulating AC133(+) stem cells restore dystrophin expression and ameliorate function in dystrophic skeletal muscle. J Clin Invest 114(2):182–195PubMedPubMedCentralCrossRefGoogle Scholar
  111. Uezumi A et al (2010) Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat Cell Biol 12(2):143–152PubMedCrossRefGoogle Scholar
  112. Valadares MC et al (2014) Human adipose tissue derived pericytes increase life span in Utrn (tm1Ked) Dmd (mdx)/J mice. Stem Cell Rev 10(6):830–840PubMedCrossRefGoogle Scholar
  113. Verdijk LB et al (2014) Satellite cells in human skeletal muscle; from birth to old age. Age (Dordr) 36(2):545–547CrossRefGoogle Scholar
  114. Vettor R et al (2009) The origin of intermuscular adipose tissue and its pathophysiological implications. Am J Physiol Endocrinol Metab 297(5):E987–E998PubMedCrossRefGoogle Scholar
  115. Vezzani B, Pierantozzi E, Sorrentino V (2016) Not all pericytes are born equal: pericytes from human adult tissues present different differentiation properties. Stem Cells Dev 25(20)Google Scholar
  116. von Tell D, Armulik A, Betsholtz C (2006) Pericytes and vascular stability. Exp Cell Res 312(5):623–629CrossRefGoogle Scholar
  117. Walston JD (2012) Sarcopenia in older adults. Curr Opin Rheumatol 24(6):623–627PubMedPubMedCentralCrossRefGoogle Scholar
  118. Wang G et al (2015) Origin and differentiation of vascular smooth muscle cells. J Physiol 593(14):3013–3030PubMedPubMedCentralCrossRefGoogle Scholar
  119. Willis BC, du Bois RM, Borok Z (2006) Epithelial origin of myofibroblasts during fibrosis in the lung. Proc Am Thorac Soc 3(4):377–382PubMedPubMedCentralCrossRefGoogle Scholar
  120. Wilm B et al (2005) The serosal mesothelium is a major source of smooth muscle cells of the gut vasculature. Development 132(23):5317–5328PubMedCrossRefPubMedCentralGoogle Scholar
  121. Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214(2):199–210PubMedPubMedCentralCrossRefGoogle Scholar
  122. Yablonka-Reuveni Z (2011) The skeletal muscle satellite cell: still young and fascinating at 50. J Histochem Cytochem 59(12):1041–1059PubMedPubMedCentralCrossRefGoogle Scholar
  123. Yao Y et al (2016) Laminin regulates PDGFRbeta(+) cell stemness and muscle development. Nat Commun 7:11415PubMedPubMedCentralCrossRefGoogle Scholar
  124. Yin H, Price F, Rudnicki MA (2013) Satellite cells and the muscle stem cell niche. Physiol Rev 93(1):23–67PubMedPubMedCentralCrossRefGoogle Scholar
  125. Zawadzka M et al (2010) CNS-resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination. Cell Stem Cell 6(6):578–590PubMedCrossRefPubMedCentralGoogle Scholar
  126. Zeisberg EM et al (2007) Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med 13(8):952–961PubMedCrossRefGoogle Scholar
  127. Zhang X et al (2011) The Nell-1 growth factor stimulates bone formation by purified human perivascular cells. Tissue Eng Part A 17(19–20):2497–2509PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Pharmaceutical and Biomedical SciencesUniversity of GeorgiaAthensUSA

Personalised recommendations