Advertisement

Unmanaged and Unintentional Recharge

  • Robert G. MalivaEmail author
Chapter
Part of the Springer Hydrogeology book series (SPRINGERHYDRO)

Abstract

Unmanaged and unintentional recharge is recharge incidental to other human activities. Unmanaged and unintentional urban recharge includes leakage from water and wastewater mains, discharges from on-site sewage systems, recharge from stormwater management infrastructure, and return flows from the irrigation of parks, lawns, and other vegetated areas. Excessive urban recharge has resulted in rising water tables in some cities, necessitating installation of drainage systems. In some rural areas, leakage from canals and irrigation return flows are the dominant inflows in shallow aquifer water budgets. Enhanced recharge also occurs as the result of changes in land use and land cover, particularly reductions in evapotranspiration caused by removal or changes in vegetation. Techniques used to quantify unmanaged and unintentional recharge include water budget analyses (e.g., transmission losses), inverse-modeling, piezometry (mapping of local water table rises), and environmental tracer analysis.

References

  1. Alhamid, A. A., Alfayzi, S. A., & Hamadto, M. A. (2007). A sustainable water resources management plan for Wadi Hanifa in Saudi Arabia. Journal King Saud University Engineering Sciences, 19(2), 209–222.CrossRefGoogle Scholar
  2. Allison, G. B., Cook, P. G., Barnett, S. R., Walker, G. R., Jolly, I. D., & Hughes, M. W. (1990). Land clearance and river salinisation in the western Murray Basin, Australia. Journal of Hydrology, 119(1–4), 1–20.CrossRefGoogle Scholar
  3. Al-Sefry, S. A., & Şen, Z. (2006). Groundwater rise problem and risk evaluation in major cities of arid lands—Jeddah case in Kingdom of Saudi Arabia. Water Resources Management, 20, 91–108.CrossRefGoogle Scholar
  4. Arnold, L. R. (2011). Estimates of deep-percolation return flow beneath a flood—and a sprinkler-irrigated site in Weld County, Colorado, 2008–2009. US. Geological Survey Scientific Investigations Report 2011–5001.Google Scholar
  5. Barrett, M. H., Hiscock, K. M., Pedley, S., Lerner, D. N., Tellam, J. H., & French, M. J. (1997). Marker species for identifying urban groundwater recharge sources: A review and case study in Nottingham, UK. Water Research, 33(14), 3083–3097.CrossRefGoogle Scholar
  6. Bell, R. W., Schofield, N. J., Loh, I. C., & Bari, M. A. (1990). Groundwater response to reforestation in the Darling Range of Western Australia. Journal of Hydrology, 115, 297–317.CrossRefGoogle Scholar
  7. Blackwood, D. J., Gilmour, D. J., Ellis, J. B., Revitt, D. M., & Staines, A. (2005). Exfiltration from sewers—Is it a serious problem? In 10th International Conference on Urban Drainage, Copenhagen, August 21–26, 2005 (pp. 1–8).Google Scholar
  8. Bouwer, H. (1978). Groundwater hydrology. New York: McGraw-Hill.Google Scholar
  9. Bouwer, H. (1987). Effect of irrigated agriculture on groundwater. Journal of Irrigation and Drainage Engineering, 113(1), 4–15.CrossRefGoogle Scholar
  10. Brassington, F. C., & Rushton, K. R. (1987). A rising water table in central London. Quarterly Journal of Engineering Geology, London, 20, 151–158.CrossRefGoogle Scholar
  11. Butler, J. J., Kluitenberg, G. J., Whittemore, D. O., Loheide, S. P., Jin, W., Billinger, M. A., & Zhan, X. (2007). A field investigation of phreatophyte‐induced fluctuations in the water table. Water Resources Research, 43(2).  https://doi.org/10.1029/2005wr004627.
  12. Chew, M. K. (2009). The monstering of tamarisk: How scientists made a plant into a problem. Journal of the History of Biology, 42(2), 231–266.CrossRefGoogle Scholar
  13. Culler, R. C., Hanson, R. L., Myrick, R. M., Turner, R. M., & Kipple, F. B. (1982). Evapotranspiration before and after clearing phreatophytes, Gila River flood plain, Graham County, Arizona. U.S. Geological Survey Professional Paper 655-P.Google Scholar
  14. Dagès, C., Voltz, M., Lacas, J. G., Huttel, O., Negro, S., & Louchart, X. (2008). An experimental study of water table recharge by seepage losses from a ditch with intermittent flow. Hydrological Processes, 22(18), 3555–3563.CrossRefGoogle Scholar
  15. Dillon, P. (2009). Water recycling via managed aquifer recharge in Australia. Boletín Geológico y Minero, 120(2), 121–130.Google Scholar
  16. Di Tomaso, J. M. (1998). Impact, biology, and ecology of saltcedar (Tamarix spp.) in the southwestern United States. Weed Technology, 12(2), 326–336.CrossRefGoogle Scholar
  17. Doody, T. M., Nagler, P. L., Glenn, E. P., Moore, G. W., Morino, K., Hultine, K. R., et al. (2011). Potential for water salvage by removal of non-native woody vegetation from dryland river systems. Hydrological Processes, 25, 4117–4131.CrossRefGoogle Scholar
  18. Doorenbos, J., & Pruitt, W. O. (1977). Crop water requirements. FAO Irrigation and Drainage Paper No. 24. Rome: Food and Agricultural Organization of the United Nations.Google Scholar
  19. Droogers, P. (2002). Global irrigated area mapping: Overview and recommendations (Paper 36). Colombo, Sri Lanka: International Water Management Institute.Google Scholar
  20. Droogers, P., Immerzeel, W. W., & Lorite, I. J. (2010). Estimating actual irrigation application by remotely sensed evapotranspiration observations. Agricultural Water Management, 97(9), 1351–1359.CrossRefGoogle Scholar
  21. Eiswirth, M., & Hötzl, H. (1999). The impacts of leaking sewers on urban groundwater. In J. Chilton (Ed.), Groundwater in the urban environment (pp. 399–404). Rotterdam: A.A. Balkema.Google Scholar
  22. Ellis, J. B. (2001). Sewer infiltration/exfiltration and interactions with sewer flows and groundwater quality. In 2nd International Conference Interactions Between Sewers, Treatment Plants and Receiving Waters in Urban Areas–Interurba II (pp. 19–22).Google Scholar
  23. Foster, S. S. D. (1990). Impacts of urbanization on groundwater. In Hydrological processes and water management in urban areas (Proceedings of the Duisberg Symposium, April 1988). IAHS Publication No. 198 (pp. 187–208).Google Scholar
  24. Garner, B. D., & Truini, M. (2011). Groundwater budgets for Detrital, Hualapai, and Sacramento Valleys, Mohave County, Arizona, 2007–08. U.S. Geological Survey Scientific Investigations Report 2011–5159.Google Scholar
  25. Gasser, G., Rona, M., Voloshenko, A., Shelkov, R., Tal, N., Pankratov, I., et al. (2010). Quantitative evaluation of tracers for quantification of wastewater contamination of potable water sources. Environmental Science and Technology, 44(10), 3919–3925.CrossRefGoogle Scholar
  26. Gee, G. W., Fayer, M. J., Rockhold, M. L., & Campbell, M. D. (1992). Variations in recharge at the Hanford Site. Northwest Science, 66, 237–250.Google Scholar
  27. Hart, C. R., White, L. D., McDonald, A., & Sheng, Z. (2005). Saltcedar control and water salvage on the Pecos River, Texas, 1999–2003. Journal of Environmental Management, 75(4), 399–409.CrossRefGoogle Scholar
  28. Hatler, W. L., & Hart, C. R. (2009). Water loss and salvage in saltcedar (Tamarix spp.) stands on the Pecos River, Texas. Invasive Plant Science and Management, 2(4), 309–317.Google Scholar
  29. Heathcote, R. L. (1983). The arid lands: Their use and abuse. London: Longman.Google Scholar
  30. Huber, S. S. (2008). The legalities of lining the All-American Canal. In CEMLP Annual Review, The Centre for Energy, Petroleum, and Mineral Law and Policy, University of Dundee.Google Scholar
  31. Izbicki, J. A., Johnson, R. U., Kulongoski, J., & Predmore, S. (2007). Ground-water recharge from small intermittent streams in the western Mojave Desert, California. In D. A. Stonestrom, J. Constantz, T. P. A. Ferre, & S. A. Leake (Eds.), Ground-water recharge in the arid and semiarid southwestern United States U.S. Geological Survey Professional Paper 1703G, (pp. 157–184).Google Scholar
  32. Izbicki, J. A., Radyk, J., & Michel, R. L. (2000). Water movement through a thick unsaturated zone underlying an intermittent stream in the western Mojave Desert, southern California, USA. Journal of Hydrology, 238(3), 194–217.CrossRefGoogle Scholar
  33. Jiménez, B. (2008). Unplanned reuse of wastewater for human consumption: The Tula Valley of Mexico. In B. Jiménez, T. Asano, B. Ellis, L.-L. Bertrand-Krajewski, C. Binnie, & M. Kimber (Eds.), Water reuse—An international survey: Contrasts, issues and needs around the world. London: IWA Publishing.Google Scholar
  34. Jiménez, B. (2009). Water and wastewater management in Mexico City. In L. W. Mays (Ed.), Integrated urban water management: arid and semi-arid regions (pp. 81–101). Paris: UNESCO, and Leiden: Taylor & Francis.Google Scholar
  35. Jiménez, B. (2010). The unintentional and intentional recharge of aquifers in the Tula and the Mexico Valleys: The Megalopolis needs Mega solutions. In Rosenberg Symposium, Buenos Aires, Argentina.Google Scholar
  36. Jiménez, B., & Chávez, A. (2004). Quality assessment of an aquifer recharged with wastewater for its potential use as drinking water source: “El Mezquital Valley” case. Water Science and Technology, 50, 269–276.CrossRefGoogle Scholar
  37. Jiménez-Cisneros, B. (2012). The planned and unplanned reuse of Mexico City’s wastewater. In Guidelines for water reuse, EPA/600/R-12/618 (pp. E-76–E-78). Washington, DC: U.S. Environmental Protection Agency.Google Scholar
  38. Jiménez-Martínez, J., Skaggs, T. H., Van Genuchten, M. T., & Candela, L. (2009). A root zone modelling approach to estimating groundwater recharge from irrigated areas. Journal of Hydrology, 367(1), 138–149.CrossRefGoogle Scholar
  39. Jobbagy, E. G., & Jackson, R. B. (2004). Groundwater use and salinization with grassland afforestation. Global Change Biology, 10(8), 1299–1312.CrossRefGoogle Scholar
  40. Kennedy, J. R. (2007). Changes in storm runoff with urbanization: The role of pervious areas in a semi-arid environment. 2007. Master’s thesis, Hydrology and Water Resources Dept. University of Arizona.Google Scholar
  41. Kennedy, J. R., & Gungle, B. (2010). Quantity and sources of base flow in the San Pedro River near Tombstone, Arizona. U.S. Geological Survey Scientific Investigations Report 2010–5200.Google Scholar
  42. Keese, K. E., Scanlon, B. R., & Reedy, R. C. (2005). Assessing controls on diffuse groundwater recharge using unsaturated flow modeling. Water Resources Research, 41, W06010.  https://doi.org/10.1029/2004WR003841.
  43. Kibel, P. S. (2008). A line drawn in water: Aquifers beneath the Mexico-United States border. Water Law Review, 12, 191–207.Google Scholar
  44. Kim, J. H., & Jackson, R. B. (2012). A global analysis of groundwater recharge for vegetation, climate, and soils. Vadose Zone Journal, 11(1).  https://doi.org/10.2136/vzj2011.0021ra.CrossRefGoogle Scholar
  45. Kruse, E., Carol, E., Mancuso, M., Laurencena, P., Deluchi, M., & Rojo, A. (2013). Recharge assessment in an urban area: A case study of La Plata, Argentina. Hydrogeology Journal, 21(5), 1091–1100.CrossRefGoogle Scholar
  46. Landers, M. N., & Ankcorn, P. D. (2008). Methods to evaluate influence of onsite septic wastewater-treatment systems on base flow in selected watersheds in Gwinnett County, Georgia, October 2007. U.S. Geological Survey Scientific Investigations Report 2008–5220.Google Scholar
  47. Leblanc, M. J., Favreau, G., Massuel, S., Tweed, S. O., Loireau, M., & Cappelaere, B. (2008). Land clearance and hydrological change in the Sahel: SW Niger. Global and Planetary Change, 61(3), 135–150.CrossRefGoogle Scholar
  48. Lerner, D. N. (1986). Leaking pipes recharge ground water. Ground Water, 24, 654–662.CrossRefGoogle Scholar
  49. Lerner, D. N. (1990). Recharge due to urbanization. In D. N. Lerner, A. S. Issar, & I. Simmers (Eds.), Groundwater recharge, a guide to understanding and estimating natural recharge, Contributions to Hydrogeology 8 (pp. 210–214). Kenilworth, UK: International Associations of Hydrogeologists.Google Scholar
  50. Lerner, D. N. (2002). Identifying and quantifying urban recharge: A review. Hydrogeology Journal, 10, 143–152.CrossRefGoogle Scholar
  51. Loheide, S. P., Butler, J. J., & Gorelick, S. M. (2005). Estimation of groundwater consumption by phreatophytes using diurnal water table fluctuations: A saturated‐unsaturated flow assessment. Water Resources Research, 41(7).  https://doi.org/10.1029/2005wr003942.
  52. Lohse, K. A., Gallo, E. L., & Kennedy, J. R. (2010). Possible tradeoffs from urbanization on groundwater recharge ad water quality. Southwest Hydrology, 2010, 18–32.Google Scholar
  53. Maliva, R. G., & Hopfensperger, K. P. (2007). Impacts of residential development on humid subtropical freshwater resources: Southwest Florida Experience. Journal American Water Resources Association, 43, 540–1549.CrossRefGoogle Scholar
  54. Maréchal, J. C., Galeazzi, L., Dewandel, B., & Ahmed, S. (2003). Importance of irrigation return flow on the groundwater budget of a rural basin in India. In Hydrology of the Mediterranean and Semiarid Regions, Publication 278 (pp. 62–67). London: International Association of Hydrological Sciences.Google Scholar
  55. Masoner, J. R., Mladinich, C. S., Konduris, A. M., & Smith, S. J. (2003). Comparison of irrigation water use estimates calculated from remotely sensed irrigated acres and state reported irrigated acres in the Lake Altus drainage basin, Oklahoma and Texas, 2000 growing season. U.S. Geological Survey Water-Resources Investigations Report 03-4155.Google Scholar
  56. McQuillan, D., & Bassett, E. (2009). Return flow to ground water from onsite wastewater systems. In 18th Annual NOWRA Technical Conference and Expo, April 6–9, 2009, Milwaukee, WI.Google Scholar
  57. Meinzer, O. E. (1923). Outline of ground-water hydrology, with definitions. U.S. Geological Survey Water-Supply Paper 494.Google Scholar
  58. Meyboom, P. (1967). Groundwater studies in the Assiniboine River drainage basin—Part II: Hydrologic characteristics of phreatophytic vegetation in south-central Saskatchewan. Geological Survey Canada Bulletin 139.Google Scholar
  59. Milczarek, M., Yao, T.-M., Harding, J., Goodrich, D., & Levick, L. (2004). Predicting groundwater recharge rates in small urbanized watersheds. Southwest Hydrology, 6–7.Google Scholar
  60. Moore, G. W., & Owens, M. K. (2012). Transpirational water loss in invaded and restored semiarid riparian forests. Restoration Ecology, 20(3), 346–351.CrossRefGoogle Scholar
  61. Morris, B. L., Darling, W. G., Cronin, A. A., Rueedi, J., Whitehead, E. J., & Gooddy, D. C. (2006). Assessing the impact of modern recharge on a sandstone aquifer beneath a suburb of Doncaster, UK. Hydrogeology Journal, 14(6), 979–997.CrossRefGoogle Scholar
  62. Nagler, P. L., Glenn, E. P., & Thompson, T. L. (2003). Comparison of transpiration rates among saltcedar, cottonwood and willow trees by sap flow and canopy temperature methods. Agricultural and Forest Meteorology, 116(1), 73–89.CrossRefGoogle Scholar
  63. Nagler, P. L., Shafroth, P. B., LaBaugh, J. W., Snyder, K. A., Scott, R. L., Merritt, D. M., & Osterberg, J. (2009). The potential water savings through the control of saltcedar and Russian olive. In P. B. Shafroth, C. A. Brown, & D. M. Merritt (Eds.), Saltcedar and Russian olive control demonstration act science assessment (pp. 35–47). U.S. Geological Survey Scientific Investigations Report 2009-5247.Google Scholar
  64. Nosetto, M. D., Jobbágy, E. G., Brizuela, A. B., & Jackson, R. B. (2012). The hydrologic consequences of land cover change in central Argentina. Agriculture, Ecosystems & Environment, 154, 2–11.CrossRefGoogle Scholar
  65. NRMMC, EPHC, NHMRC. (2009). Australian Guidelines for water recycling: managing health and environmental risks (Phase 2) managed aquifer recharge. Australia: Natural Resource Management Ministerial Council, Environment Protection and Heritage Council, National Health and Medical Research Council.Google Scholar
  66. Ochoa, C. G., Fernald, A. G., & Guldan, S. J. (2011). Caracterización del balance hídrico y la recarga por retorno de riego en un valle agrícola de una región semiárida de los Estados Unidos de América. Estudios en la Zona no Saturada del Suelo, 10, 337–340.Google Scholar
  67. Ochoa, C. G., Fernald, A. G., Guldan, S. J., Tidwell, V. C., & Shukla, M. K. (2012). Shallow aquifer recharge from irrigation in a semiarid agricultural valley in New Mexico. Journal of Hydrologic Engineering, 18(10), 1219–1230.CrossRefGoogle Scholar
  68. Ozdogan, M., & Gutman, G. (2008). A new methodology to map irrigated areas using multi-temporal MODIS and ancillary data: An application example in the continental US. Remote Sensing of Environment, 112(9), 3520–3537.CrossRefGoogle Scholar
  69. Peck, A. J., & Williamson, D. R. (1987). Effects of forest clearing on groundwater. Journal of Hydrology, 94, 47–65.CrossRefGoogle Scholar
  70. Pescod, M. E. (1992). Wastewater treatment and use in agriculture, FAO Irrigation and Drainage Paper 47. Rome: Food and Agriculture Organization of the United Nations.Google Scholar
  71. Petheram, C., Walker, G., Grayson, R., Thierfelder, T., & Zhang, L. (2002). Towards a framework for predicting impacts of land-use on recharge: 1. A review of recharge studies in Australia. Australian Journal of Soil Research, 40(3), 397–417.Google Scholar
  72. Pfeiffer, L., & Lin, C. Y.-C. (2010). The effect of irrigation technology on groundwater use. Choices, 25(3).Google Scholar
  73. Pulido-Bosch, A., & Sbih, Y. B. (1995). Centuries of artificial recharge on the southern edge of the Sierra Nevada (Granada, Spain). Environmental Geology, 26(1), 57–63.CrossRefGoogle Scholar
  74. Ritzi, R. W., Bouwer, H., & Sorooshian, S. (1985). Water resource conservation by reducing phreatophyte transpiration. In First North American Riparian Conference, Riparian Ecosystems and Their Management: Reconciling Conflicting Uses, Tucson, Arizona, April 16–18, 1985, Tucson, Arizona (pp. 191–196).Google Scholar
  75. Robertson, W. M., & Sharp, J. M., Jr. (2013). Variability of groundwater nitrate concentrations over time in arid basin aquifers: Sources, mechanisms of transport, and implications for conceptual models. Environmental Earth Sciences, 69(7), 2415–2426.CrossRefGoogle Scholar
  76. Robertson, W. M., & Sharp, J. M. (2015). Estimates of net infiltration in arid basins and potential impacts on recharge and solute flux due to land use and vegetation change. Journal of Hydrology, 522, 211–227.CrossRefGoogle Scholar
  77. Robinson, T. W. (1952). Phreatophytes and their relation to water in Western United States. Transactions, American Geophysical Union (EOS), 33, 57–61.CrossRefGoogle Scholar
  78. Robinson, T. W. (1958). Phreatophytes. U.S. Geological Survey Water-Supply Paper 1423.Google Scholar
  79. Robinson, T. W. (1959). Phreatophyte research in Western United States, October 1958 to March 1959. U.S. Geological Survey Circular 413.Google Scholar
  80. Romaguera, M., Hoekstra, A. Y., Su, Z., Krol, M. S., & Salama, M. S. (2010). Potential of using remote sensing techniques for global assessment of water footprint of crops. Remote Sensing, 2(4), 1177–1196.CrossRefGoogle Scholar
  81. Sammis, T. W., Evans, D. D., & Warrick, A. W. (1982). Comparison of methods to estimate deep percolation rates. Journal American Water Resources Association, 18(3), 465–470.CrossRefGoogle Scholar
  82. Scanlon, B. R., Keese, K., Reedy, R. C., Simunek, J., & Andraski, B. J. (2003). Variations in flow and transport in thick desert vadose zones in response to paleoclimatic forcing (0–90 kyr): Field measurements, modeling, and uncertainties. Water Resources Research, 39(7), 1179.CrossRefGoogle Scholar
  83. Scanlon, B. R., Keese, K. E., Flint, A. L., Flint, L. E., Gaye, C. B., Edmunds, W. M., et al. (2006). Global synthesis of groundwater recharge in semiarid and arid regions. Hydrological Processes, 20, 3335–3379.CrossRefGoogle Scholar
  84. Scanlon, B. R., Reedy, R. C., Stonestrom, D. A., Prudic, D. E., & Dennehy, K. F. (2005). Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Global Change Biology, 11, 1577–1593.CrossRefGoogle Scholar
  85. Scanlon, B. R., Jolly, I., Sophocleous, M., & Zhang, L. (2007). Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality. Water Resources Research, 43, W03437.  https://doi.org/10.1029/2006WR005486.CrossRefGoogle Scholar
  86. Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I., et al. (2010). Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Science Reviews, 99(3), 125–161.CrossRefGoogle Scholar
  87. Sharp, J. M., Jr. (2010). The impacts of urbanization on groundwater systems and recharge. Aqua Mundi, 1, 51–56.Google Scholar
  88. Stephens, D. B. (1996). Vadose zone hydrology. Boca Raton: CRCR Press.Google Scholar
  89. Stephens, D. B., Blandford, T. N., Cattron, D., & Moore, S. (2006). Quantifying return flow to groundwater: What’s in the tool box? In Universities Council on Water Resources (UCOWR) Conference ‘Increasing Freshwater Supplies’, July 18–20, 2006, Santa Fe, New Mexico.Google Scholar
  90. Stewart, A. M. (2014). Estimation of urban-enhanced infiltration and groundwater recharge, Sierra Vista subbasin, southeast Arizona USA. Ph.D. Dissertation. Tucson; University of Arizona.Google Scholar
  91. Stonestrom, D. A., & Harrill, J. R. (2007). Ground-water recharge in the arid and semiarid southwestern United States—Climate and geologic framework. In D. A. Stonestrom, J. Constantz, T. P. A. Ferre, & S. A. Leake (Eds.), Ground-water recharge in the arid and semiarid southwestern United States U.S. Geological Survey Professional Paper 1703G, (pp. 1–27).Google Scholar
  92. Stovall, J., & Rainwater, K. (2002). Evaluating recharge and irrigation return flows for the South Plains. In Proceedings AWRA Summer Specialty Conference, Ground Water/Surface Water Interactions, July 1–3, 2002, pp. 291–296.Google Scholar
  93. Su, Z. (2002). The surface energy balance system (SEBS) for estimation of turbulent heat fluxes. Hydrology and Earth System Sciences Discussions, 6(1), 85–100.CrossRefGoogle Scholar
  94. Thenkabail, P. S., Schull, M., & Turral, H. (2005). Ganges and Indus river basin land use/land cover (LULC) and irrigated area mapping using continuous streams of MODIS data. Remote Sensing of Environment, 95(3), 317–341.CrossRefGoogle Scholar
  95. Urbonas, B. R., & Roesner L. A. (1992). Hydrologic design for urban drainage and flood control. In D. R. Maidment (Ed.), Handbook of hydrology, Chapter 28. New York: McGraw Hill.Google Scholar
  96. Van Hylckama, T. E. (1980). Weather and evapotranspiration studies in a saltcedar thicket, Arizona. U.S. Geological Survey Professional Paper 491-F.Google Scholar
  97. Vázquez-Suñe, E., Carrera, J., Tubau, I., X. Sánchez-Vila, X., & Soler, A. (2010). An approach to identify urban groundwater recharge. Hydrology and Earth System Sciences, 14, 2085–2097.Google Scholar
  98. Velpuri, N. M., Thenkabail, P. S., Gumma, M. K., Biradar, C., Dheeravath, V., Noojipady, P., et al. (2009). Influence of resolution in irrigated area mapping and area estimation. Photogrammetric Engineering & Remote Sensing, 75(12), 1383–1395.CrossRefGoogle Scholar
  99. Vengosh, A., & Pankratov, I. (1998). Chloride/bromide and chloride/fluoride ratios of domestic sewage effluents and associated contaminated ground water. Ground Water, 36(5), 815–825.CrossRefGoogle Scholar
  100. Vollertsen, J., & Hvitved-Jacobsen, T. (2003). Exfiltration from gravity sewers: A pilot scale study. Water Science and Technology, 47(4), 69–76.CrossRefGoogle Scholar
  101. Ward, F. A., & Pulido-Velazquez, M. (2008). Water conservation in irrigation can increase water use. Proceedings of the National Academy of Sciences, 105(47), 18215–18220.CrossRefGoogle Scholar
  102. Welder, G. E. (1988). Hydrologic effects of phreatophyte control, Acme-Artesia Reach of the Pecos River, New Mexico, 1967–1982. U.S. Geological Survey Water-Resources Investigations Report 87-4148.Google Scholar
  103. Werner, M., Maggs, I., & Petkovic, M. (2011). Accurate measurements of minimum night flows for water loss analysis. In 5th Annual WIOA NSW Water Industry Engineers & Operators Conference. Water loss management program NSW, Exhileracing events centre, Newcastle (pp. 31–37).Google Scholar
  104. White, W. N. (1932). A method of estimating ground-water supplies based on discharge by plants and evaporation from soil: Results of investigations in Escalante Valley, Utah. U.S. Geological Survey Water Supply Paper 659-A.Google Scholar
  105. Wiles, T. J., & Sharp, J. M. (2008). The secondary permeability of impervious cover. Environmental and Engineering Geoscience, 14(4), 251–265.CrossRefGoogle Scholar
  106. Wolf, L. E. I. F., Eiswirth, M., & Hotzl, H. (2006). Assessing sewer-groundwater interaction at the city scale based on individual sewer defects and marker species distributions. Environmental Geology, 49, 849–857.CrossRefGoogle Scholar
  107. Wu, X., Zhou, J., Wang, H., Li, Y., & Zhong, B. (2015). Evaluation of irrigation water use efficiency using remote sensing in the middle reach of the Heihe river, in the semi-arid Northwestern China. Hydrological Processes, 29(9), 2243–2257.CrossRefGoogle Scholar
  108. Yang, Y., Lerner, D. N., Barrett, M. H., & Tellam, J. H. (1999). Quantification of groundwater recharge in the city of Nottingham, UK. Environmental Geology, 38(3), 183–198.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.WSPFlorida Gulf Coast UniversityFort MyersUSA

Personalised recommendations