Advertisement

Uniform Circle Formation

  • Giovanni Viglietta
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11340)

Abstract

We treat the second of the two patterns that are formable in the \(\mathcal{OBLOT}\) model from every initial configuration of n robots: Uniform Circle, i.e., the pattern where the robots are located at the vertices of a regular n-gon. The algorithm presented in this chapter solves the Uniform Circle Formation Problem in the standard \(\mathcal{OBLOT}\) model under the \(\mathcal{A}\textsc {sync}\) scheduler.

Keyword

Uniform Circle Formation 

References

  1. 1.
    Bhagat, S., Mukhopadhyaya, K.: Optimum circle formation by autonomous robots. In: Chaki, R., Cortesi, A., Saeed, K., Chaki, N. (eds.) Advanced Computing and Systems for Security. AISC, vol. 666, pp. 153–165. Springer, Singapore (2018).  https://doi.org/10.1007/978-981-10-8180-4_10CrossRefGoogle Scholar
  2. 2.
    Chatzigiannakis, I., Markou, M., Nikoletseas, S.: Distributed circle formation for anonymous oblivious robots. In: Ribeiro, C.C., Martins, S.L. (eds.) WEA 2004. LNCS, vol. 3059, pp. 159–174. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24838-5_12CrossRefGoogle Scholar
  3. 3.
    Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by mobile robots: gathering. SIAM J. Comput. 41(4), 829–879 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Défago, X., Konagaya, A.: Circle formation for oblivious anonymous mobile robots with no common sense of orientation. In: Proceedings of the ACM International Workshop on Principles of Mobile Computing (POMC), pp. 97–104 (2002)Google Scholar
  5. 5.
    Défago, X., Souissi, S.: Non-uniform circle formation algorithm for oblivious mobile robots with convergence toward uniformity. Theor. Comput. Sci. 396(1–3), 97–112 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Dieudonné, Y., Labbani-Igbida, O., Petit, F.: Circle formation of weak mobile robots. ACM Trans. Auton. Adapt. Syst. 3(4), 16:1–16:20 (2008)CrossRefGoogle Scholar
  7. 7.
    Dieudonné, Y., Petit, F.: Swing words to make circle formation quiescent. In: Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 166–179. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72951-8_14CrossRefGoogle Scholar
  8. 8.
    Dieudonné, Y., Petit, F.: Squaring the circle with weak mobile robots. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 354–365. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-92182-0_33CrossRefGoogle Scholar
  9. 9.
    Feletti, C., Mereghetti, C., Palano, B.: Uniform circle formation for swarms of opaque robots with lights. In: Izumi, T., Kuznetsov, P. (eds.) Stabilization, Safety, and Security of Distributed Systems. LNCS, vol. 11201, pp. 317–332. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-03232-6_21CrossRefGoogle Scholar
  10. 10.
    Flocchini, P., Prencipe, G., Santoro, N.: Self-deployment algorithms for mobile sensors on a ring. Theor. Comput. Sci. 402(1), 67–80 (2008)CrossRefGoogle Scholar
  11. 11.
    Flocchini, P., Prencipe, G., Santoro, N., Viglietta, G.: Distributed computing by mobile robots: solving the uniform circle formation problem. In: Aguilera, M.K., Querzoni, L., Shapiro, M. (eds.) OPODIS 2014. LNCS, vol. 8878, pp. 217–232. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-14472-6_15CrossRefGoogle Scholar
  12. 12.
    Flocchini, P., Prencipe, G., Santoro, N., Viglietta, G.: Distributed computing by mobile robots: uniform circle formation. Distrib. Comput. 30(6), 413–457 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Fujinaga, N., Yamauchi, Y., Kijima, S., Yamashita, M.: Asynchronous pattern formation by anonymous oblivious mobile robots. SIAM J. Comput. 44(3), 740–785 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Katreniak, B.: Biangular circle formation by asynchronous mobile robots. In: Pelc, A., Raynal, M. (eds.) SIROCCO 2005. LNCS, vol. 3499, pp. 185–199. Springer, Heidelberg (2005).  https://doi.org/10.1007/11429647_16CrossRefGoogle Scholar
  15. 15.
    Mamino, M., Viglietta, G.: Square formation by asynchronous oblivious robots. In: Proceedings of the 28th Canadian Conference on Computational Geometry (CCCG), pp. 1–6 (2016)Google Scholar
  16. 16.
    Miyamae, T., Ichikawa, S., Hara, F.: Emergent approach to circle formation by multiple autonomous modular robots. J. Robot. Mechatron. 21(1), 3–11 (2009)CrossRefGoogle Scholar
  17. 17.
    Mondal, M., Chaudhuri, S.G.: Uniform circle formation by mobile robots. In: Proceedings of the Workshop Program of the 19th International Conference on Distributed Computing and Networking (ICDCN), pp. 20:1–20:2 (2018)Google Scholar
  18. 18.
    Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.JAISTNomiJapan

Personalised recommendations