Advertisement

Mobile Agents on Dynamic Graphs

  • Giuseppe Antonio Di LunaEmail author
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11340)

Abstract

At the core of distributed computing there is the necessity to coordinate a group of entities in face of the uncertainty present in the environment. Classically, such uncertainty was mainly the one introduced by the loss or the delay of messages (asynchrony and failures).

In this chapter we focus on the uncertainty introduced by the dynamism of the communication topology. We use the paradigm of mobile agents. In such paradigm the computational entities are intelligent messages circulating on top of a dynamic graph. We consider the problems of Exploration, Gathering and Deployment. We survey the most recent results in this interesting and relatively new field.

Keywords

Mobile agents Dynamic graphs 

Notes

Acknowledgment

The author thanks Giuseppe Prencipe and the anonymous reviewer for their invaluable feedbacks.

References

  1. 1.
    Aaron, E., Krizanc, D., Meyerson, E.: DMVP: foremost waypoint coverage of time-varying graphs. In: Kratsch, D., Todinca, I. (eds.) WG 2014. LNCS, vol. 8747, pp. 29–41. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-12340-0_3CrossRefGoogle Scholar
  2. 2.
    Aaron, E., Krizanc, D., Meyerson, E.: Multi-robot foremost coverage of time-varying graphs. In: Gao, J., Efrat, A., Fekete, S.P., Zhang, Y. (eds.) ALGOSENSORS 2014. LNCS, vol. 8847, pp. 22–38. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46018-4_2CrossRefGoogle Scholar
  3. 3.
    Agarwalla, A., Augustine, J., Moses, W., Madhav, S., Sridhar, A.K.: Deterministic dispersion of mobile robots in dynamic rings. In: Proceedings of the 19th International Conference on Distributed Computing and Networking (ICDCN), pp. 19:1–19:4 (2018)Google Scholar
  4. 4.
    Aguilera, M.K.: A pleasant stroll through the land of infinitely many creatures. SIGACT News 35(2), 36–59 (2004)CrossRefGoogle Scholar
  5. 5.
    Albers, S., Henzinger, M.: Exploring unknown environments. SIAM J. Comput. 29(4), 1164–1188 (2000)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Augustine, J., Pandurangan, G., Robinson, P.: Fast byzantine agreement in dynamic networks. In: Proceedings of the 32th Symposium on Principles of Distributed Computing (PODC), pp. 74–83 (2013)Google Scholar
  7. 7.
    Avin, C., Koucký, M., Lotker, Z.: Cover time and mixing time of random walks on dynamic graphs. Random Struct. Algorithms 52(4), 576–596 (2018)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Baldoni, R., Bonomi, S., Raynal, M.: Regular register: an implementation in a churn prone environment. In: Kutten, S., Žerovnik, J. (eds.) SIROCCO 2009. LNCS, vol. 5869, pp. 15–29. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-11476-2_3CrossRefGoogle Scholar
  9. 9.
    Baldoni, R., Platania, M., Querzoni, L., Scipioni, S.: Practical uniform peer sampling under churn. In: Proceedings of the 9th International Symposium on Parallel and Distributed Computing (IPDC), pp. 93–100 (2010)Google Scholar
  10. 10.
    Baldoni, R., Querzoni, L., Virgillito, A., Jiménez-Peris, R., Patiño-Martínez, M.: Dynamic quorums for DHT-based P2P networks. In: Proceedings of the 4th IEEE International Symposium on Network Computing and Applications (NCA), pp. 91–100 (2005)Google Scholar
  11. 11.
    Barrière, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Rendezvous and election of mobile agents: impact of sense of direction. Theory Comput. Syst. 44(3), 143–162 (2007)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Baumann, H., Crescenzi, P., Fraigniaud, P.: Parsimonious flooding in dynamic graphs. Distrib. Comput. 24(1), 31–44 (2011)CrossRefGoogle Scholar
  13. 13.
    Biely, M., Robinson, P., Schmid, U.: Agreement in directed dynamic networks. In: Even, G., Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 73–84. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31104-8_7CrossRefGoogle Scholar
  14. 14.
    Bournat, M., Datta, A.K., Dubois, S.: Self-stabilizing robots in highly dynamic environments. In: Proceedings of the 18th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), pp. 54–69 (2016)Google Scholar
  15. 15.
    Bournat, M., Dubois, S., Petit, F.: Computability of perpetual exploration in highly dynamic rings. In: Proceedings of the 37th IEEE International Conference on Distributed Computing Systems (ICDCS), pp. 794–804 (2017)Google Scholar
  16. 16.
    Bui-Xuan, B., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost journeys in dynamic networks. Int. J. Found. Comput. Sci. 14(2), 267–285 (2003)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Casteigts, A., Flocchini, P., Mans, B., Santoro, N.: Shortest, fastest, and foremost broadcast in dynamic networks. Int. J. Found. Comput. Sci. 25(4), 499–522 (2015)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. Int. J. Parallel Emergent Distrib. Syst. 27(5), 387–408 (2012)CrossRefGoogle Scholar
  19. 19.
    Clementi, A., Monti, A., Pasquale, F., Silvestri, R.: Information spreading in stationary markovian evolving graphs. IEEE Trans. Parallel Distrib. Syst. 22(9), 1425–1432 (2011)CrossRefGoogle Scholar
  20. 20.
    De Marco, G., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vaccaro, U.: Asynchronous deterministic rendezvous in graphs. Theor. Comput. Sci. 355, 315–326 (2006)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Deng, X., Papadimitriou, C.H.: Exploring an unknown graph. J. Graph Theory 32(3), 265–297 (1999)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Di Luna, G.A., Baldoni, R.: Brief announcement: investigating the cost of anonymity on dynamic networks. In: Proceedings of the 34th Symposium on Principles of Distributed Computing (PODC), pp. 339–341 (2015)Google Scholar
  23. 23.
    Di Luna, G.A., Baldoni, R., Bonomi, S., Chatzigiannakis, I.: Counting in anonymous dynamic networks under worst-case adversary. In: Proceedings of the IEEE 34th International Conference on Distributed Computing Systems (ICDCS), pp. 338–347 (2014)Google Scholar
  24. 24.
    Di Luna, G.A., Dobrev, S., Flocchini, P., Santoro, N.: Live exploration of dynamic rings. In: Proceedings of the 36th IEEE International Conference on Distributed Computing Systems (ICDCS), pp. 570–579 (2016)Google Scholar
  25. 25.
    Di Luna, G.A., Flocchini, P., Pagli, L., Prencipe, G., Santoro, N., Viglietta, G.: Gathering in dynamic rings. In: Proceedings of the 24th International Colloquium Structural Information and Communication Complexity (SIROCCO), pp. 339–355 (2017)Google Scholar
  26. 26.
    Dieudonn, Y., Pelc, A.: Deterministic network exploration by anonymous silent agents with local traffic reports. ACM Trans. Algorithms 11(2) (2014). Article No. 10Google Scholar
  27. 27.
    Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Multiple agents rendezvous in a ring in spite of a black hole. In: Papatriantafilou, M., Hunel, P. (eds.) OPODIS 2003. LNCS, vol. 3144, pp. 34–46. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-27860-3_6CrossRefzbMATHGoogle Scholar
  28. 28.
    Elor, Y., Bruckstein, A.M.: Uniform multi-agent deployment on a ring. Theor. Comput. Sci. 412(8), 783–795 (2011)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Erlebach, T., Hoffmann, M., Kammer, F.: On temporal graph exploration. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 444–455. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-47672-7_36CrossRefGoogle Scholar
  30. 30.
    Flocchini, P., Kellett, M., Mason, P.C., Santoro, N.: Searching for black holes in subways. Theory Comput. Syst. 50(1), 158–184 (2012)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Flocchini, P., Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Multiple mobile agent rendezvous in a ring. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 599–608. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24698-5_62CrossRefGoogle Scholar
  32. 32.
    Flocchini, P., Mans, B., Santoro, N.: On the exploration of time-varying networks. Theor. Comput. Sci. 469, 53–68 (2013)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph exploration by a finite automaton. Theor. Comput. Sci. 345(2–3), 331–344 (2005)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Harary, F., Gupta, G.: Dynamic graph models. Math. Comput. Model. 25(7), 79–88 (1997)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Ilcinkas, D., Klasing, R., Wade, A.M.: Exploration of constantly connected dynamic graphs based on cactuses. In: Halldórsson, M.M. (ed.) SIROCCO 2014. LNCS, vol. 8576, pp. 250–262. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-09620-9_20CrossRefGoogle Scholar
  36. 36.
    Ilcinkas, D., Wade, A.M.: On the power of waiting when exploring public transportation systems. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 451–464. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25873-2_31CrossRefGoogle Scholar
  37. 37.
    Ilcinkas, D., Wade, A.M.: Exploration of the T-interval-connected dynamic graphs: the case of the ring. Theory Comput. Syst. 62(5), 1144–1160 (2018)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots in a ring. Theor. Comput. Sci. 390(1), 27–39 (2008)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Kowalski, D., Mosteiro, M.: Polynomial counting in anonymous dynamic networks with applications to anonymous dynamic algebraic computations. In: Proceedings of the 45th International Colloquium on Automata, Languages, and Programming (ICALP), pp. 156:1–156:14 (2018)Google Scholar
  40. 40.
    Kranakis, E., Krizanc, D., Markou, E.: Mobile agent rendezvous in a synchronous torus. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 653–664. Springer, Heidelberg (2006).  https://doi.org/10.1007/11682462_60CrossRefGoogle Scholar
  41. 41.
    Kranakis, E., Krizanc, D., Markou, E.: The Mobile Agent Rendezvous Problem in the Ring. Morgan & Claypool, San Rafael (2010)CrossRefGoogle Scholar
  42. 42.
    Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Mobile agent rendezvous problem in the ring. In: Proceedings of the 23rd International Conference on Distributed Computing Systems (ICDCS), pp. 592–599 (2003)Google Scholar
  43. 43.
    Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks. In: Proceedings of the 42nd Symposium on Theory of Computing (STOC), pp. 513–522 (2010)Google Scholar
  44. 44.
    Kuhn, F., Moses, Y., Oshman, R.: Coordinated consensus in dynamic networks. In: Proceedings of the 30th Symposium on Principles of Distributed Computing (PODC), pp. 1–10 (2011)Google Scholar
  45. 45.
    Merritt, M., Taubenfeld, G.: Computing with infinitely many processes. Inf. Comput. 233, 12–31 (2013)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Michail, O.: An introduction to temporal graphs: An algorithmic perspective. Internet Math. 12(4), 239–280 (2016)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Michail, O., Spirakis, P.G.: Traveling salesman problems in temporal graphs. Theor. Comput. Sci. 634, 1–23 (2016)MathSciNetCrossRefGoogle Scholar
  48. 48.
    O’Dell, R., Wattenhofer, R.: Information dissemination in highly dynamic graphs. In: Proceedings of the Joint Workshop on Foundations of Mobile Computing (DIALM-POMC), pp. 104–110 (2005)Google Scholar
  49. 49.
    Panaite, P., Pelc, A.: Exploring unknown undirected graphs. J. Algorithms 33, 281–295 (1999)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Proskurnikov, A.V., Parsegov, S.E.: Problem of uniform deployment on a line segment for second-order agents. Autom. Remote Control 77(7), 1248–1258 (2016)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Santoro, N.: Time to change: on distributed computing in dynamic networks. In: Proceedings of the 19th International Conference on Principles of Distributed Systems (OPODIS), pp. 1–14 (2015)Google Scholar
  52. 52.
    Shibata, M., Kakugawa, H., Masuzawa, T.: Brief announcement: space-efficient uniform deployment of mobile agents in asynchronous unidirectional rings. In: Spirakis, P., Tsigas, P. (eds.) SSS 2017. LNCS, vol. 10616, pp. 489–493. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-69084-1_37CrossRefGoogle Scholar
  53. 53.
    Shibata, M., Mega, T., Ooshita, F., Kakugawa, H., Masuzawa, T.: Uniform deployment of mobile agents in asynchronous rings. In: Proceedings of the 35th ACM Symposium on Principles of Distributed Computing (PODC), pp. 415–424 (2016)Google Scholar
  54. 54.
    Stutzbach, D., Rejaie, R.: Understanding churn in peer-to-peer networks. In: Proceedings of the 6th ACM SIGCOMM Conference on Internet Measurement (IMC), pp. 189–202 (2006)Google Scholar
  55. 55.
    Ta-Shma, A., Zwick, U.: Deterministic rendezvous, treasure hunts, and strongly universal exploration sequences. ACM Trans. Algorithms 10(3), 12:1–12:15 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Aix-Marseille Université, LIS, CNRS, Université de ToulonToulonFrance

Personalised recommendations