Advertisement

Moving and Computing Models: Agents

  • Shantanu Das
  • Nicola Santoro
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11340)

Abstract

This chapter introduces and discusses the existing computational models employed in the literature for studying the feasibility and complexity of computations by mobile agents: computational mobile entities that operate and move in discrete spaces, modeled as graphs.

While almost all models share some fundamental features, making basic common assumptions, their fundamental differences depend on the assumptions made on the capabilities of the agents, in particular on the means of interaction with the environment and of inter-agent communication. Clearly, there are many variations of the models, depending on the assumed level of synchrony, anonymity, persistent memory, and topological knowledge. This Chapter aims to provide an overview of these models and assumptions.

Keywords

Mobile agents Graph Communication Coordination Synchronization Whiteboards Tokens Face-to-Face Wireless Memory 

References

  1. 1.
    Albers, S., Henzinger, M.: Exploring unknown environments. In: Proceedings of 29th ACM Symposium on Theory of Computing (STOC), pp. 416–425 (1997)Google Scholar
  2. 2.
    Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. Chapman & Hall, Kluwer (2003)zbMATHGoogle Scholar
  3. 3.
    Královič, R., Miklík, S.: Periodic data retrieval problem in rings containing a malicious host. In: Patt-Shamir, B., Ekim, T. (eds.) SIROCCO 2010. LNCS, vol. 6058, pp. 157–167. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13284-1_13CrossRefGoogle Scholar
  4. 4.
    Balamohan, B., Dobrev, S., Flocchini, P., Santoro, N.: Exploring an unknown dangerous graph with a constant number of tokens. Theor. Comput. Sci. 610, 169–181 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Bampas, E., Czyzowicz, J., Gąsieniec, L., Ilcinkas, D., Labourel, A.: Almost optimal asynchronous rendezvous in infinite multidimensional grids. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 297–311. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15763-9_28CrossRefGoogle Scholar
  6. 6.
    Bampas, E., Leonardos, N., Markou, E., Pagourtzis, A., Petrolia, M.: Improved periodic data retrieval in asynchronous rings with a faulty host. Theor. Comput. Sci. 608, 231–254 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Barrière, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Capture of an intruder by mobile agents. In: Proceedings of 14th ACM Symposium on Parallel Algorithms and Architectures (SPAA), pp. 200–209 (2002)Google Scholar
  8. 8.
    Barrière, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Can we elect if we cannot compare? In: Proceedings of 15th ACM Symposium on Parallel Algorithms and Architectures (SPAA), pp. 324–332 (2003)Google Scholar
  9. 9.
    Barrière, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Rendezvous and election of mobile agents: impact of sense of direction. Theor. Comput. Syst. 40(2), 143–162 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Barrière, L., Flocchini, P., Mesa-Barrameda, E., Santoro, N.: Uniform scattering of autonomous mobile robots in a grid. Int. J. Found. Comput. Sci. 22(3), 679–697 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Baston, V., Gal, S.: Rendezvous search when marks are left at the starting points. Naval Res. Logist. 38, 469–494 (1991)zbMATHCrossRefGoogle Scholar
  12. 12.
    Bender, M., Fernandez, A., Ron, D., Sahai, A., Vadhan, S.: The power of a pebble: exploring and mapping directed graphs. In: Proceedings of 30th ACM Symposium on Theory of Computing (STOC), pp. 269–287 (1998)Google Scholar
  13. 13.
    Braun, P., Rossak, W.: Mobile Agents. Morgan Kaufmann, Burlington (2005)Google Scholar
  14. 14.
    Cabri, G., Leonardi, L., Zambonelli, F.: Mobile-agent coordination models for internet applications. Computer 33(2), 82–89 (2000)CrossRefGoogle Scholar
  15. 15.
    Cai, J., Flocchini, P., Santoro, N.: Network decontamination from a black virus. Int. J. Netw. Comput. 4(1), 151–173 (2014)CrossRefGoogle Scholar
  16. 16.
    Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. Int. J. Parallel Emergent Distrib. Syst. 27(5), 387–408 (2012)CrossRefGoogle Scholar
  17. 17.
    Chalopin, J., Das, S., Labourel, A., Markou, E.: Tight bounds for black hole search with scattered agents in synchronous rings. Theor. Comput. Sci. 509, 70–85 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Chalopin, J., Das, S., Santoro, N.: Rendezvous of mobile agents in unknown graphs with faulty links. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 108–122. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-75142-7_11CrossRefGoogle Scholar
  19. 19.
    Chalopin, J., Godard, E., Métivier, Y., Ossamy, R.: Mobile agent algorithms versus message passing algorithms. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 187–201. Springer, Heidelberg (2006).  https://doi.org/10.1007/11945529_14CrossRefGoogle Scholar
  20. 20.
    Chalopin, J., Godard, E., Naudin, A.: Anonymous graph exploration with binoculars. In: Moses, Y. (ed.) DISC 2015. LNCS, vol. 9363, pp. 107–122. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48653-5_8CrossRefGoogle Scholar
  21. 21.
    Cooper, C., Klasing, R., Radzik, T.: Locating and repairing faults in a network with mobile agents. Theor. Comput. Sci. 411(14–15), 1638–1647 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Cornejo, A., Kuhn, F.: Deploying wireless networks with beeps. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 148–162. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15763-9_15CrossRefGoogle Scholar
  23. 23.
    Czumaj, A., Davies, P.: Communicating with beeps. In: Proceedings of 20th International Conference on Principles of Distributed Systems (OPODIS), pp. 1–16 (2016)Google Scholar
  24. 24.
    Czyzowicz, J., Gasieniec, L., Kosowski, A., Kranakis, E., Krizanc, D., Taleb, N.: When patrolmen become corrupted: monitoring a graph using faulty mobile robots. Algorithmica 7916(3), 925–940 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Czyzowicz, J., et al.: Search on a line by Byzantinerobots. In: Proceedings of 27th International Symposium onAlgorithms and Computation (ISAAC), pp. 27:1–27:12 (2016)Google Scholar
  26. 26.
    Czyzowicz, J., Godon, M., Kranakis, E., Labourel, A., Markou, E.: Exploring graphs with time constraints by unreliable collections of mobile robots. In: Tjoa, A.M., Bellatreche, L., Biffl, S., van Leeuwen, J., Wiedermann, J. (eds.) SOFSEM 2018. LNCS, vol. 10706, pp. 381–395. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-73117-9_27CrossRefGoogle Scholar
  27. 27.
    Czyzowicz, J., Kowalski, D., Markou, E., Pelc, A.: Searching for a black hole in synchronous tree networks. Comb. Probab. Comput. 16, 595–619 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Czyzowicz, J., Pelc, A., Labourel, A.: How to meet asynchronously (almost) everywhere. ACM Trans. Algorithms 8(4), 37:1–37:14 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Barrameda, E.M., Das, S., Santoro, N.: Deployment of asynchronous robotic sensors in unknown orthogonal environments. In: Fekete, S.P. (ed.) ALGOSENSORS 2008. LNCS, vol. 5389, pp. 125–140. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-92862-1_11CrossRefGoogle Scholar
  30. 30.
    Das, S., Dereniowski, D., Karousatou, C.: Collaborative exploration of trees by energy-constrained mobile robots. Theor. Comput. Syst. 62(5), 1223–1240 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Das, S., Flocchini, P., Kutten, S., Nayak, A., Santoro, N.: Map construction of unknown graphs by multiple agents. Theor. Comput. Sci. 385(1–3), 34–48 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Das, S., Flocchini, P., Nayak, A., Santoro, N.: Effective elections for anonymous mobile agents. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 732–743. Springer, Heidelberg (2006).  https://doi.org/10.1007/11940128_73CrossRefGoogle Scholar
  33. 33.
    Das, S., Flocchini, P., Santoro, N., Yamashita, M.: Fault-tolerant simulation of message-passing algorithms by mobile agents. In: Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 289–303. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72951-8_23CrossRefGoogle Scholar
  34. 34.
    Das, S., Focardi, R., Luccio, F., Markou, E., Squarcina, M.: Gathering of robots in a ring with mobile faults. Theor. Computer Sci. (2018)Google Scholar
  35. 35.
    Das, S., Luccio, F.L., Markou, E.: Mobile agents rendezvous in spite of a malicious agent. In: Bose, P., Gąsieniec, L.A., Römer, K., Wattenhofer, R. (eds.) ALGOSENSORS 2015. LNCS, vol. 9536, pp. 211–224. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-28472-9_16CrossRefGoogle Scholar
  36. 36.
    Deng, X., Papadimitriou, C.H.: Exploring an unknown graph. J. Graph Theor. 32(3), 265–297 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Dessmark, A., Fraigniaud, P., Pelc, A.: Deterministic rendezvous in graphs. Algorithmica 46, 69–96 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Di Luna, G.A., Dobrev, S., Flocchini, P., Santoro, N.: Distributed exploration of dynamic rings. Distribut. Comput. (2018)Google Scholar
  39. 39.
    Di Luna, G.A., Flocchini, P., Pagli, L., Prencipe, G., Santoro, N., Viglietta, G.: Gathering in dynamic rings. In Proocedings of the 24th International Colloquium Structural Information and Communication Complexity (SIROCCO), pp. 339–355 (2017)Google Scholar
  40. 40.
    Dieudonné, Y., Pelc, A., Peleg, D.: Gathering despite mischief. ACM Trans. Algorithms 11(1), 1–28 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree exploration with little memory. J. Algorithms 51(1), 38–64 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Dobrev, S., Flocchini, P., Kralovic, R., Santoro, N.: Exploring an unknown dangerous graph using tokens. Theor. Comput. Sci. 472, 28–45 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Searching for a black hole in arbitrary networks: optimal mobile agents protocols. Distribut. Comput. 19(1), 1–19 (2006)zbMATHCrossRefGoogle Scholar
  44. 44.
    Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Mobile search for a black hole in an anonymous ring. Algorithmica 48(1), 67–90 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Dobrev, S., Královič, R., Santoro, N., Shi, W.: Black hole search in asynchronous rings using tokens. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds.) CIAC 2006. LNCS, vol. 3998, pp. 139–150. Springer, Heidelberg (2006).  https://doi.org/10.1007/11758471_16CrossRefGoogle Scholar
  46. 46.
    Dufoulon, F., Burman, J., Beauquier, J.: Beeping a deterministic time-optimal leader election. In: Proceedings of 32nd International Symposium on DistributedComputing (DISC) (2018)Google Scholar
  47. 47.
    Erlebach, T., Hoffmann, M., Kammer, F.: On temporal graphexploration. In: Proceedings of the 42nd International Colloquium on Automata, Languages, and Programming (ICALP), pp. 444–455 (2015)CrossRefGoogle Scholar
  48. 48.
    Ferreira, A.: Building a reference combinatorial model for MANETs. IEEE Netw. 18(5), 24–29 (2004)CrossRefGoogle Scholar
  49. 49.
    Flocchini, P., Ilcinkas, D., Santoro, N.: Ping pong in dangerous graphs: optimal black hole search with pebbles. Algorithmica 62(3–4), 1006–1033 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Flocchini, P., Mans, B., Santoro, N.: Sense of direction in distributed computing. Theor. Comput. Sci. 291, 29–53 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Flocchini, P., Mans, B., Santoro, N.: On the exploration of time-varying networks. Theor. Comput. Sci. 469, 53–68 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Flocchini, P., Roncato, A., Santoro, N.: Backward consistency and sense of direction in advanced distributed systems. SIAM J. Comput. 32(2), 281–306 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Förster, K.-T., Seidel, J., Wattenhofer, R.: Deterministic leader election in multi-hop beeping networks. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 212–226. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45174-8_15CrossRefGoogle Scholar
  54. 54.
    Fraigniaud, P., Gasieniec, L., Kowalski, D., Pelc, A.: Collective tree exploration. Networks 48(3), 166–177 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph exploration by a finite automaton. Theor. Comput. Sci. 345(2–3), 331–344 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Gorain, B., Pelc, A.: Deterministic graph exploration with advice. ACM Trans. Algorithms 15(1), 8 (2018, to appear)CrossRefGoogle Scholar
  57. 57.
    Gray, R., Kotz, D., Nog, S., Rus, D., Cybenko, G.: Mobile agents: the next generation in distributed computing. In: Proceedings of 2nd AIZU International Symposium on Parallel Algorithms/Architecture Synthesis (PAS) (1997)Google Scholar
  58. 58.
    Harary, F., Gupta, G.: Dynamic graph models. Math. Comp. Model. 25(7), 79–88 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Hsiang, T.-R., Arkin, E.M., Bender, M.A., Fekete, S.P., Mitchell, J.S.B.: Algorithms for rapidly dispersing robot swarms in unknown environments. In: Boissonnat, J.-D., Burdick, J., Goldberg, K., Hutchinson, S. (eds.) Algorithmic Foundations of Robotics V. STAR, vol. 7, pp. 77–93. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-45058-0_6CrossRefGoogle Scholar
  60. 60.
    Ilcinkas, D., Wade, A.M.: Exploration of the T-interval-connected dynamic graphs: the case of the ring. Theor. Comput. Syst. 62(5), 1144–1160 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    Johansen, D., van Renesse, R., Schneider, F.B.: Operating system support for mobile agents. In: Proceedings of 5th Workshop Hot Topics in Operating Systems (HotOS), pp. 42–45 (1995)Google Scholar
  62. 62.
    Kranakis, E., Krizanc, D., Markou, E.: Deterministic symmetric rendezvous with tokens in a synchronous torus. Discrete Appl. Math. 159(9), 896–923 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    Megiddo, N., Hakimi, S., Garey, M., Johnson, D., Papadimitriou, C.: The complexity of searching a graph. J. ACM 35(1), 18–44 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    Nisse, N., Soguet, D.: Graph searching with advice. Theor. Comput. Sci. 410(14), 1307–1318 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  65. 65.
    Parson, T.: The search number of a connected graph. In: Proceedings of 9th Southeastern Conference on Combinatorics, Graph Theory and Computing, pp. 549–554 (1978)Google Scholar
  66. 66.
    Rollik, H.A.: Automaten in planaren graphen. Acta Informatica 13(3), 287–298 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    Sudo, Y., Baba, D., Nakamura, J., Ooshita, F., Kakugawa, H., Masuzawa, T.: An agent exploration in unknown undirected graphs with whiteboards. In: Proceedings of 3rd Workshop on Reliability, Availability, and Security (WRAS) (2010)Google Scholar
  68. 68.
    Wall, D.: Messages as active agents. In: Proceedings of 9th ACM Symposium on Principles of Programming Languages (POPL), pp. 549–554 (1978)Google Scholar
  69. 69.
    Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems: the Gaia methodology. ACM Trans. Softw. Eng. Methodol. 12(3), 317–370 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Aix-Marseille University, CNRS, LISMarseilleFrance
  2. 2.Carleton UniversityOttawaCanada

Personalised recommendations