Graph Explorations with Mobile Agents

  • Shantanu DasEmail author
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11340)


The basic primitive for a mobile agent is the ability to visit all the nodes of the graph in a systematic manner. This chapter considers the exploration of unknown graphs in full detail, for the specific mobile agent model considered in this book. The graph is considered to be finite, undirected and connected. Other than this fact, no prior knowledge of the graph is assumed. Several exploration techniques are introduced and explained for either a single agent, or multiple agents, exploring either labelled or unlabelled graphs. We focus on the efficiency of exploration and consider three different complexity measures, the time taken, the amount of memory used by the agents and the storage needed at each node of the graph. For exploration by multiple agents, we consider collaborative exploration by a team of colocated agents as well as distributed exploration by agents scattered in a graph. The concluding section presents some brief ideas and references on more advanced topics on graph exploration that are not covered in this chapter.


Mobile agents Graph exploration Undirected graph Deterministic Anonymous 


  1. 1.
    Awerbuch, B., Betke, M., Singh, M.: Piecemeal graph learning by a mobile robot. Inf. Comput. 152, 155–172 (1999)CrossRefGoogle Scholar
  2. 2.
    Bampas, E., Chalopin, J., Das, S., Hackfeld, J., Karousatou, C.: Maximal exploration of trees with energy-constrained agents. CoRR, abs/1802.06636 (2018)Google Scholar
  3. 3.
    Barrière, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Rendezvous and election of mobile agents: impact of sense of direction. Theory Comput. Syst. 40(2), 143–162 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Becha, H., Flocchini, P.: Optimal construction of sense of direction in a torus by a mobile agent. Int. J. Found. Comput. Sci. 18(3), 529–546 (2007)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bender, M., Fernandez, A., Ron, D., Sahai, A., Vadhan, S.: The power of a pebble: exploring and mapping directed graphs. In: Proceedings of the 30th ACM Symposium on Theory of Computing (STOC 1998), pp. 269–287 (1998)Google Scholar
  6. 6.
    Blum, M., Kozen, D.: On the power of the compass (or, why mazes are easier to search than graphs). In: 19th Symposium on Foundations of Computer Science (FOCS 1978), pp. 132–142 (1978)Google Scholar
  7. 7.
    Brass, P., Cabrera-Mora, F., Gasparri, A., Xiao, J.: Multirobot tree and graph exploration. IEEE Trans. Robot. 27(4), 707–717 (2011)CrossRefGoogle Scholar
  8. 8.
    Budach, L.: Automata and labyrinths. Math. Nachrichten 86, 195–282 (1978)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Chalopin, J., Das, S., Kosowski, A.: Constructing a map of an anonymous graph: applications of universal sequences. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 119–134. Springer, Heidelberg (2010). Scholar
  10. 10.
    Chalopin, J., Das, S., Santoro, N.: Rendezvous of mobile agents in unknown graphs with faulty links. In: Proceedings of 21st International Symposium on Distributed Computing (DISC), pp. 108–122 (2007)Google Scholar
  11. 11.
    Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.: Label-guided graph exploration by a finite automaton. ACM Trans. Algorithms 4(4), 42:1–42:18 (2008)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Czyzowicz, J., Dereniowski, D., Gasieniec, L., Klasing, R., Kosowski, A., Pajak, D.: Collision-free network exploration. J. Comput. Syst. Sci. 86, 70–81 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Czyzowicz, J., et al.: More efficient periodic traversal in anonymous undirected graphs. Theor. Comput. Sci. 444, 60–76 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Czyzowicz, J., Kosowski, A., Pelc, A.: How to meet when you forget: log-space rendezvous in arbitrary graphs. Distrib. Comput. 25(2), 165–178 (2012)CrossRefGoogle Scholar
  15. 15.
    Das, S., Dereniowski, D., Karousatou, C.: Collaborative exploration of trees by energy-constrained mobile robots. Theory Comput. Syst. 62(5), 1223–1240 (2018)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Das, S., Dereniowski, D., Uznanski, P.: Energy constrained depth first search. CoRR, abs/1709.10146 (2017)Google Scholar
  17. 17.
    Das, S., Flocchini, P., Kutten, S., Nayak, A., Santoro, N.: Map construction of unknown graphs by multiple agents. Theor. Comput. Sci. 385(1–3), 34–48 (2007)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Das, S., Flocchini, P., Nayak, A., Santoro, N.: Effective elections for anonymous mobile agents. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 732–743. Springer, Heidelberg (2006). Scholar
  19. 19.
    Das, S., Mihalák, M., Šrámek, R., Vicari, E., Widmayer, P.: Rendezvous of mobile agents when tokens fail anytime. In: Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS 2008. LNCS, vol. 5401, pp. 463–480. Springer, Heidelberg (2008). Scholar
  20. 20.
    Deng, X., Papadimitriou, C.H.: Exploring an unknown graph. J. Graph Theory 32(3), 265–297 (1999)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Dereniowski, D., Disser, Y., Kosowski, A., Pajak, D., Uznański, P.: Fast collaborative graph exploration. Inf. Comput. 243, 37–49 (2015)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Dieudonne, Y., Pelc, A., Peleg, D.: Gathering despite mischief. ACM Trans. Algorithms 11(1), 1 (2014)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree exploration with little memory. J. Algorithms 51, 38–63 (2004)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Disser, Y., Hackfeld, J., Klimm, M.: Undirected graph exploration with Open image in new window \((\log \log n)\) pebbles. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 25–39 (2016)Google Scholar
  25. 25.
    Dobrev, S., Flocchini, P., Kralovic, R., Ruzicka, P., Prencipe, G., Santoro, N.: Black hole search in common interconnection networks. Networks 47(2), 61–71 (2006)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Duncan, C.A., Kobourov, S.G., Kumar, V.S.A.: Optimal constrained graph exploration. In: 12th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 807–814 (2001)Google Scholar
  27. 27.
    Dynia, M., Łopuszański, J., Schindelhauer, C.: Why robots need maps. In: Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 41–50. Springer, Heidelberg (2007). Scholar
  28. 28.
    Flocchini, P., Huang, M.J., Luccio, F.L.: Decontamination of hypercubes by mobile agents. Networks 52(3), 167–178 (2008)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Fraigniaud, P., Gasieniec, L., Kowalski, D., Pelc, A.: Collective tree exploration. Networks 48(3), 166–177 (2006)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph exploration by a finite automaton. Theor. Comput. Sci. 345(2–3), 331–344 (2005)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Kosowski, A., Navarra, A.: Graph decomposition for memoryless periodic exploration. Algorithmica 63(1–2), 26–38 (2012)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Menc, A., Pajak, D., Uznanski, P.: Time and space optimality of rotor-router graph exploration. Inf. Process. Lett. 127, 17–20 (2017)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Ortolf, C., Schindelhauer, C.: Online multi-robot exploration of grid graphs with rectangular obstacles. In: 24th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 27–36 (2012)Google Scholar
  34. 34.
    Panaite, P., Pelc, A.: Exploring unknown undirected graphs. J. Algorithms 33, 281–295 (1999)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4), 17:1–17:24 (2008)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Rollik, H.A.: Automaten in planaren graphen. Acta Informatica 13(3), 287–298 (1980)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Shannon, C.E.: Presentation of a maze-solving machine. In: 8th Conference of the Josiah Macy Jr. Found. (Cybernetics), pp. 173–180 (1951)Google Scholar
  38. 38.
    Tarjan, R.: Depth first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Yamashita, M., Kameda, T.: Computing on anonymous networks: part i-characterizing the solvable cases. IEEE Trans. Parallel Distrib. Syst. 7(1), 69–89 (1996)CrossRefGoogle Scholar
  40. 40.
    Yanovski, V., Wagner, I.A., Bruckstein, A.M.: A distributed ant algorithm for efficiently patrolling a network. Algorithmica 37(3), 165–186 (2003)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Aix-Marseille University, CNRS, LISMarseilleFrance

Personalised recommendations