Advertisement

Patrolling

  • Jurek Czyzowicz
  • Kostantinos Georgiou
  • Evangelos KranakisEmail author
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11340)

Abstract

Patrolling is concerned with the design of continuous trajectories which specify robots perpetual movements along a curve so that the time between any two consecutive visits to any point of the curve is minimized. In this paper we survey recent rigorous results on patrolling by various number of robots and robots’ specifications (e.g., speed), and for various types of curves. We discuss efficient patrolling strategies for mobile agents with various capabilities and behaviors acting on a variety of geometric graph domains.

Keywords

Agents Faulty Graphs Patrolling Speeds Strategies Trees Visibility 

Notes

Acknowledgements

We would like to express our deepest appreciation to our colleagues Huda Chuangpishit, Leszek Gasieniec, Tomasz Jurdzinsk, Adrian Kosowski, Danny Krizanc, Fraser MacQuarrie, Russell Martin, Dominik Pajak, Oscar Morales Ponce, Lata Narayanan, Jarda Opatrny, and Najmeh Taleb for numerous interesting conversations that excited our interests on all aspects of patrolling.

References

  1. 1.
    Agmon, N., Kraus, S., Kaminka, G.A.: Multi-robot perimeter patrol in adversarial settings. In: ICRA, pp. 2339–2345 (2008)Google Scholar
  2. 2.
    Almeida, A., et al.: Recent advances on multi-agent patrolling. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS, vol. 3171, pp. 474–483. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-28645-5_48CrossRefGoogle Scholar
  3. 3.
    Bampas, E., Gąsieniec, L., Hanusse, N., Ilcinkas, D., Klasing, R., Kosowski, A.: Euler tour lock-in problem in the rotor-router model. In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805, pp. 423–435. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-04355-0_44CrossRefGoogle Scholar
  4. 4.
    Chalopin, J., Das, S., Gawrychowski, P., Kosowski, A., Labourel, A., Uznański, P.: Lock-in problem for parallel rotor-router walks. arXiv preprint arXiv:1407.3200 (2014)
  5. 5.
    Chalopin, J., Das, S., Gawrychowski, P., Kosowski, A., Labourel, A., Uznański, P.: Limit behavior of the multi-agent rotor-router system. In: Moses, Y. (ed.) DISC 2015. LNCS, vol. 9363, pp. 123–139. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48653-5_9CrossRefGoogle Scholar
  6. 6.
    Chevaleyre, Y.: Theoretical analysis of the multi-agent patrolling problem. In: IAT, pp. 302–308 (2004)Google Scholar
  7. 7.
    Chuangpishit, H., Czyzowicz, J., Gasieniec, L., Georgiou, K., Jurdzinski, T., Kranakis, E.: Patrolling a path connecting a set of points with unbalanced frequencies of visits. CoRR, abs/1710.00466 (2017)Google Scholar
  8. 8.
    Collins, A., et al.: Optimal patrolling of fragmented boundaries. In: 25th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2013, Montreal, QC, Canada, 23–25 July 2013, pp. 241–250 (2013)Google Scholar
  9. 9.
    Czyzowicz, J., Gąsieniec, L., Kosowski, A., Kranakis, E.: Boundary patrolling by mobile agents with distinct maximal speeds. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 701–712. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23719-5_59CrossRefGoogle Scholar
  10. 10.
    Czyzowicz, J., Gasieniec, L., Kosowski, A., Kranakis, E., Krizanc, D., Taleb, N.: When patrolmen become corrupted: monitoring a graph using faulty mobile robots. Algorithmica 79(3), 925–940 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Czyzowicz, J., Georgiou, K., Kranakis, E., MacQuarrie, F., Pajak, D.: Fence patrolling with two-speed robots. In: Proceedings of 5th the International Conference on Operations Research and Enterprise Systems, ICORES 2016, Rome, Italy, 23–25 February 2016, pp. 229–241 (2016)Google Scholar
  12. 12.
    Czyzowicz, J., Kosowski, A., Kranakis, E., Taleb, N.: Patrolling trees with mobile robots. In: Cuppens, F., Wang, L., Cuppens-Boulahia, N., Tawbi, N., Garcia-Alfaro, J. (eds.) FPS 2016. LNCS, vol. 10128, pp. 331–344. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-51966-1_22CrossRefGoogle Scholar
  13. 13.
    Czyzowicz, J., Kranakis, E., Pajak, D., Taleb, N.: Patrolling by robots equipped with visibility. In: Halldórsson, M.M. (ed.) SIROCCO 2014. LNCS, vol. 8576, pp. 224–234. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-09620-9_18CrossRefGoogle Scholar
  14. 14.
    Dumitrescu, A., Ghosh, A., Tóth, C.D.: On fence patrolling by mobile agents. Electr. J. Comb. 21(3), P3.4 (2014)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Elmaliach, Y., Agmon, N., Kaminka, G.A.: Multi-robot area patrol under frequency constraints. Ann. Math. Artif. Intell. 57(3–4), 293–320 (2009)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Elmaliach, Y., Shiloni, A., Kaminka, G.A.: A realistic model of frequency-based multi-robot polyline patrolling. In: AAMAS, no. 1, pp. 63–70 (2008)Google Scholar
  17. 17.
    Hazon, N., Kaminka, G.A.: On redundancy, efficiency, and robustness in coverage for multiple robots. Robot. Auton. Syst. 56(12), 1102–1114 (2008)CrossRefGoogle Scholar
  18. 18.
    Kawamura, A., Kobayashi, Y.: Fence patrolling by mobile agents with distinct speeds. Distrib. Comput. 28(2), 147–154 (2015)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kranakis, E., Krizanc, D.: Optimization problems in infrastructure security. In: Garcia-Alfaro, J., Kranakis, E., Bonfante, G. (eds.) FPS 2015. LNCS, vol. 9482, pp. 3–13. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-30303-1_1CrossRefGoogle Scholar
  20. 20.
    Machado, A., Ramalho, G., Zucker, J.-D., Drogoul, A.: Multi-agent patrolling: an empirical analysis of alternative architectures. In: Simão Sichman, J., Bousquet, F., Davidsson, P. (eds.) MABS 2002. LNCS, vol. 2581, pp. 155–170. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-36483-8_11CrossRefzbMATHGoogle Scholar
  21. 21.
    Pasqualetti, F., Franchi, A., Bullo, F.: On optimal cooperative patrolling. In: CDC, pp. 7153–7158 (2010)Google Scholar
  22. 22.
    Yanovski, V., Wagner, I.A., Bruckstein, A.M.: A distributed ant algorithm for efficiently patrolling a network. Algorithmica 37(3), 165–186 (2003)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jurek Czyzowicz
    • 1
  • Kostantinos Georgiou
    • 2
  • Evangelos Kranakis
    • 3
    Email author
  1. 1.Dépt. d’informatiqueUniv. du Québec en OutaouaisGatineauCanada
  2. 2.Department of MathematicsRyerson UniversityTorontoCanada
  3. 3.School of Computer ScienceCarleton UniversityOttawaCanada

Personalised recommendations