Advertisement

Group Search and Evacuation

  • Jurek Czyzowicz
  • Kostantinos Georgiou
  • Evangelos KranakisEmail author
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11340)

Abstract

Group search and evacuation are fundamental tasks performed by a set of co-operating, autonomous mobile agents. The two tasks are similar in that they both aim to search a given domain so as to locate a target which has been placed at an unknown location in the domain. However they also differ in that the former terminates when the first searcher in the group reaches the target while the latter when the last searcher in the group reaches the target. Variations where termination is determined by some designated agent have also been considered. Depending on the domain being explored we distinguish linear search when the target is placed on the infinite line and circular search when the target is placed on the perimeter of a disk. The agents move with their own maximum speed, and the goal is to design algorithms that minimize the worst case termination time. Two communication models between the robots are being considered: in the non-wireless (or face-to-face) communication model, robots exchange information only when simultaneously located at the same point, and wireless communication in which robots can communicate with one another anywhere at any time. In this paper we survey some of the most interesting recent algorithmic results on search and evacuation concerning mobile agents with and without faults.

Keywords

Autonomous agents Cycle Evacuation Exit Line Search 

Notes

Acknowledgements

We would like to express our deepest appreciation to our colleagues Stefan Dobrev, Leszek Gasieniec, Maxime Godon, Danny Krizanc, Fraser MacQuarrie, Russell Martin, Dominik Pajak, Oscar Morales Ponce, Lata Narayanan, and Jarda Opatrny for numerous interesting conversations that excited our interests on all aspects of search and evacuation.

References

  1. 1.
    Ahlswede, R., Wegener, I.: Search Problems. Wiley, Hoboken (1987)zbMATHGoogle Scholar
  2. 2.
    Alpern, S.: Find-and-fetch search on a tree. Oper. Res. 59(5), 1258–1268 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. Springer, Heidelberg (2003).  https://doi.org/10.1007/b100809CrossRefzbMATHGoogle Scholar
  4. 4.
    Alpern, S., Fokkink, R., Gasieniec, L., Lindelauf, R., Subrahmanian, V.S.: Search Theory: A Game Theoretic Perspective. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-1-4614-6825-7CrossRefzbMATHGoogle Scholar
  5. 5.
    Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous, vol. 55. Springer, Heidelberg (2006).  https://doi.org/10.1007/b100809CrossRefzbMATHGoogle Scholar
  6. 6.
    Baeza-Yates, R., Culberson, J., Rawlins, G.: Searching in the plane. Inf. Comput. 106(2), 234–252 (1993)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Baeza-Yates, R., Schott, R.: Parallel searching in the plane. Comput. Geom. 5(3), 143–154 (1995)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Beck, A.: On the linear search problem. Israel J. Math 2(4), 221–228 (1964)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bellman, R.: An optimal search. SIAM Rev. 5(3), 274–274 (1963)CrossRefGoogle Scholar
  10. 10.
    Bonato, A.: The Game of Cops and Robbers on Graphs. American Mathematical Society, Providence (2011)CrossRefGoogle Scholar
  11. 11.
    Bonato, A., Pralat, P.: Graph Searching Games and Probabilistic Methods. CRC Press, Boca Raton (2017)CrossRefGoogle Scholar
  12. 12.
    Bose, P., De Carufel, J.-L.: A general framework for searching on a line. Theor. Comput. Sci. 703, 1–17 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Brandt, S., Laufenberg, F., Lv, Y., Stolz, D., Wattenhofer, R.: Collaboration without communication: evacuating two robots from a disk. In: Fotakis, D., Pagourtzis, A., Paschos, V.T. (eds.) CIAC 2017. LNCS, vol. 10236, pp. 104–115. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-57586-5_10CrossRefGoogle Scholar
  14. 14.
    Bullo, F., Cortes, J., Martinez, S.: Distributed Control of Robotic Networks: A Mathematical Approach to Motion Coordination Algorithms. Princeton University Press, Princeton (2009)CrossRefGoogle Scholar
  15. 15.
    Cares, J.R.: Operations Research for Unmanned Systems. Wiley, Hoboken (2016)CrossRefGoogle Scholar
  16. 16.
    Chuangpishit, H., Mehrabi, S., Narayanan, L., Opatrny, J.: Evacuating an equilateral triangle in the face-to-face model. In: Aspnes, J., Bessani, A., Felber, P., Leitão, J. (eds.) 21st International Conference on Principles of Distributed Systems (OPODIS 2017). Leibniz International Proceedings in Informatics (LIPIcs), vol. 95, pp. 11:1–11:16 (2018)Google Scholar
  17. 17.
    Czyzowicz, J., Gąsieniec, L., Gorry, T., Kranakis, E., Martin, R., Pajak, D.: Evacuating robots via unknown exit in a disk. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 122–136. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45174-8_9CrossRefGoogle Scholar
  18. 18.
    Czyzowicz, J., et al.: Priority evacuation from a disk using mobile robots. In: Lotker, Z., Patt-Shamir, B. (eds.) SIROCCO 2018. LNCS, vol. 11085, pp. 392–407. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-01325-7_32CrossRefGoogle Scholar
  19. 19.
    Czyzowicz, J., et al.: God save the queen. In: 9th International Conference on Fun With Algorithms (FUN 2018) (2018)Google Scholar
  20. 20.
    Czyzowicz, J., Georgiou, K., Kranakis, E., Narayanan, L., Opatrny, J., Vogtenhuber, B.: Evacuating robots from a disk using face-to-face communication (extended abstract). In: Paschos, V.T., Widmayer, P. (eds.) CIAC 2015. LNCS, vol. 9079, pp. 140–152. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-18173-8_10CrossRefGoogle Scholar
  21. 21.
    Czyzowicz, J., Dobrev, S., Georgiou, K., Kranakis, E., MacQuarrie, F.: Evacuating two robots from multiple unknown exits in a circle. Theor. Comput. Sci. 709, 20–30 (2018)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Czyzowicz, J., et al.: Evacuation from a disc in the presence of a faulty robot. In: Das, S., Tixeuil, S. (eds.) SIROCCO 2017. LNCS, vol. 10641, pp. 158–173. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-72050-0_10CrossRefGoogle Scholar
  23. 23.
    Czyzowicz, J., et al.: Search on a line by byzantine robots. In: 27th International Symposium on Algorithms and Computation, ISAAC 2016, Sydney, Australia, 12–14 December 2016, pp. 27:1–27:12 (2016)Google Scholar
  24. 24.
    Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J.: Search on a line with faulty robots. In: Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing, PODC 2016, Chicago, IL, USA, 25–28 July 2016, pp. 405–414 (2016)Google Scholar
  25. 25.
    Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J., Shende, S.M.: Wireless autonomous robot evacuation from equilateral triangles and squares. In: Papavassiliou, S., Ruehrup, S. (eds.) ADHOC-NOW 2015. LNCS, vol. 9143, pp. 181–194. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19662-6_13CrossRefGoogle Scholar
  26. 26.
    Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J., Shende, S.M.: Linear search with terrain-dependent speeds. In: Fotakis, D., Pagourtzis, A., Paschos, V.T. (eds.) CIAC 2017. LNCS, vol. 10236, pp. 430–441. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-57586-5_36CrossRefGoogle Scholar
  27. 27.
    Georgiou, K., Karakostas, G., Kranakis, E.: Search-and-fetch with 2 robots on a disk: wireless and face-to-face communication models. CoRR, abs/1611.10208 (2016)Google Scholar
  28. 28.
    Georgiou, K., Karakostas, G., Kranakis, E.: Search-and-fetch with one robot on a disk - (track: wireless and geometry). In: Chrobak, M., Fernández Anta, A., Gąsieniec, L., Klasing, R. (eds.) ALGOSENSORS 2016. LNCS, vol. 10050, pp. 80–94. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-53058-1_6CrossRefGoogle Scholar
  29. 29.
    Jennings, J.S., Whelan, G., Evans, W.F.: Cooperative search and rescue with a team of mobile robots. In: ICAR, pp. 193–200. IEEE (1997)Google Scholar
  30. 30.
    Kagan, E., Ben-Gal, I.: Search and Foraging: Individual Motion and Swarm Dynamics. CRC Press, Boca Raton (2015)CrossRefGoogle Scholar
  31. 31.
    Kupavskii, A., Welzl, E.: Lower bounds for searching robots, some faulty. CoRR, abs/1707.05077 (2017)Google Scholar
  32. 32.
    Lamprou, I., Martin, R., Schewe, S.: Fast two-robot disk evacuation with wireless communication. In: Gavoille, C., Ilcinkas, D. (eds.) DISC 2016. LNCS, vol. 9888, pp. 1–15. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53426-7_1CrossRefGoogle Scholar
  33. 33.
    Mesbahi, M., Egerstedt, M.: Graph Theoretic Methods in Multiagent Networks. Princeton University Press, Princeton (2010)CrossRefGoogle Scholar
  34. 34.
    Nahin, P.J.: Chases and Escapes: The Mathematics of Pursuit and Evasion. Princeton University Press, Princeton (2012)zbMATHGoogle Scholar
  35. 35.
    Schwefel, H.-P.P.: Evolution and Optimum Seeking: The Sixth Generation. Wiley, Hoboken (1993)Google Scholar
  36. 36.
    Stone, L.D.: Theory of Optimal Search, vol. 118. Elsevier, Amsterdam (1976)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jurek Czyzowicz
    • 1
  • Kostantinos Georgiou
    • 2
  • Evangelos Kranakis
    • 3
    Email author
  1. 1.Dépt. d’informatiqueUniv. du Québec en OutaouaisGatineauCanada
  2. 2.Department of MathematicsRyerson UniversityTorontoCanada
  3. 3.School of Computer ScienceCarleton UniversityOttawaCanada

Personalised recommendations