Advertisement

Continuous Protocols for Swarm Robotics

  • Peter KlingEmail author
  • Friedhelm Meyer auf der Heide
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11340)

Abstract

We consider simple models of swarms of identical, anonymous robots: they are points in the plane and “see” only their neighbors (robots within distance one). We will deal with distributed local protocols of such swarms that result in formations like “gathering at one point”. The focus will be on protocols assuming a continuous time model. We present upper and lower bounds on their run time and energy consumption, and compare different protocols both theoretically and experimentally.

Keywords

Robots Continuous Gathering 

References

  1. 1.
    Ando, H., Suzuki, I., Yamashita, M.: Formation and agreement problems for synchronous mobile robots with limited visibility. In: Proceedings of 10th International Symposium on Intelligent Control (ISIC), pp. 453–460, August 1995.  https://doi.org/10.1109/ISIC.1995.525098
  2. 2.
    Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the robots gathering problem. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1181–1196. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-45061-0_90CrossRefGoogle Scholar
  3. 3.
    Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in asynchronous robot systems. SIAM J. Comput. 34(6), 1516–1528 (2005).  https://doi.org/10.1137/S0097539704446475MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Degener, B., Kempkes, B., Langner, T., Meyer auf der Heide, F., Pietrzyk, P., Wattenhofer, R.: A tight runtime bound for synchronous gathering of autonomous robots with limited visibility. In: Rajaraman R., Meyer auf der Heide, F., (eds.) SPAA 2011: Proceedings of the 23rd Annual ACM Symposium on Parallelism in Algorithms and Architectures, San Jose, CA, USA, 4–6 June 2011 (Co-located with FCRC 2011), pp. 139–148. ACM (2011).  https://doi.org/10.1145/1989493.1989515
  5. 5.
    Degener, B., Kempkes, B., Kempkes, P., Meyer auf der Heide, F.: Linear and competitive strategies for continuous robot formation problems. TOPC 2(1), 2:1–2:18 (2015).  https://doi.org/10.1145/2742341CrossRefGoogle Scholar
  6. 6.
    Dieudonné, Y., Petit, F.: Self-stabilizing deterministic gathering. In: Dolev, S. (ed.) ALGOSENSORS 2009. LNCS, vol. 5804, pp. 230–241. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-05434-1_23CrossRefGoogle Scholar
  7. 7.
    Gabriel, K.R., Sokal, R.R.: A new statistical approach to geographic variation analysis. Syst. Biol. 18(3), 259–278 (1969).  https://doi.org/10.2307/2412323CrossRefGoogle Scholar
  8. 8.
    Gordon, N., Wagner, I.A., Bruckstein, A.M.: Gathering multiple robotic a(ge)nts with limited sensing capabilities. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 142–153. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-28646-2_13CrossRefGoogle Scholar
  9. 9.
    Izumi, T., Katayama, Y., Inuzuka, N., Wada, K.: Gathering autonomous mobile robots with dynamic compasses: an optimal result. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 298–312. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-75142-7_24CrossRefGoogle Scholar
  10. 10.
    Katayama, Y., Tomida, Y., Imazu, H., Inuzuka, N., Wada, K.: Dynamic compass models and gathering algorithms for autonomous mobile robots. In: Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 274–288. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72951-8_22CrossRefzbMATHGoogle Scholar
  11. 11.
    Katreniak, B.: Convergence with limited visibility by asynchronous mobile robots. In: Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS, vol. 6796, pp. 125–137. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22212-2_12CrossRefGoogle Scholar
  12. 12.
    Li, S., Meyer auf der Heide, F., Podlipyan, P.: The impact of the gabriel subgraph of the visibility graph on the gathering of mobile autonomous robots. In: Chrobak, M., Fernández Anta, A., Gąsieniec, L., Klasing, R. (eds.) ALGOSENSORS 2016. LNCS, vol. 10050, pp. 62–79. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-53058-1_5CrossRefGoogle Scholar
  13. 13.
    Li, S., Markarian, C., Meyer auf der Heide, F., Podlipyan, P.: A continuous strategy for collisionless gathering. In: Fernández Anta, A., Jurdzinski, T., Mosteiro, M.A., Zhang, Y. (eds.) ALGOSENSORS 2017. LNCS, vol. 10718, pp. 182–197. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-72751-6_14CrossRefGoogle Scholar
  14. 14.
    Nguyen, H.G., Pezeshkian, N., Raymond, S.M., Gupta, A., Spector, J.M.: Autonomous communication relays for tactical robots. In: Proceedings of the 11th International Conference on Advanced Robotics (ICAR), pp. 35–40 (2003)Google Scholar
  15. 15.
    Olver, F.W., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions, 1st edn. Cambridge University Press, New York (2010)zbMATHGoogle Scholar
  16. 16.
    Prencipe, G.: Impossibility of gathering by a set of autonomous mobile robots. Theor. Comput. Sci. 384(2–3), 222–231 (2007).  https://doi.org/10.1016/j.tcs.2007.04.023MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Souissi, S., Défago, X., Yamashita, M.: Gathering asynchronous mobile robots with inaccurate compasses. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 333–349. Springer, Heidelberg (2006).  https://doi.org/10.1007/11945529_24CrossRefGoogle Scholar
  18. 18.
    Watton, A., Kydon, D.W.: Analytical aspects of the \(n\)-bug problem. Am. J. Phys. 37(2), 220–221 (1969).  https://doi.org/10.1119/1.1975458CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Universität HamburgHamburgGermany
  2. 2.University of PaderbornPaderbornGermany

Personalised recommendations