• Jan Frederik TotzEmail author
Part of the Springer Theses book series (Springer Theses)


In this thesis a number of self-organized patterns, that exhibit spatio-temporally periodic synchronized activity, are elucidated in numerical simulations and chemical experiments. Special focus is given to the propagation of excitation waves on different topologies.


  1. 1.
    J.F. Totz, H. Engel, O. Steinbock, Spatial confinement causes lifetime enhancement and expansion of vortex rings with positive filament tension. New J. Phys. 17, 093043 (2015). Scholar
  2. 2.
    A.T. Winfree, Electrical turbulence in three-dimensional heart muscle. Science 266, 1003 (1994). Scholar
  3. 3.
    J.F. Totz, R. Snari, D. Yengi, M.R. Tinsley, H. Engel, K. Showalter, Phase-lag synchronization in networks of coupled chemical oscillators. Phys. Rev. E 92, 022819 (2015).
  4. 4.
    D. Rubino, K.A. Robbins, N.G. Hatsopoulos, Propagating waves mediate information transfer in the motor cortex. Nat. Neurosci. 9, 1549 (2006). Scholar
  5. 5.
    A.J. Ijspeert, Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21, 642 (2008). Scholar
  6. 6.
    Y. Kuramoto, D. Battogtokh, Coexistence of coherence and incoherence in nonlocally coupled phase oscillators. Nonlinear Phenom. Complex Syst. 5, 380 (2002).
  7. 7.
    J.F. Totz, J. Rode, M.R. Tinsley, K. Showalter, H. Engel, Spiral wave chimera states in large populations of coupled chemical oscillators. Nat. Phys. 14, 282 (2018). Scholar
  8. 8.
    A.T. Winfree, The Geometry of Biological Time, (Springer, Berlin, 2001). Scholar
  9. 9.
    J.M. Anumonwo, M. Delmar, A. Vinet, D.C. Michaels, J. Jalife, Phase resetting and entrainment of pacemaker activity in single sinus nodal cells. Circ. Res. 68, 1138 (1991). Scholar
  10. 10.
    V. Varma, N. Mukherjee, N.N. Kannan, V.K. Sharma, Strong (Type 0) phase resetting of activity-rest rhythm in fruit flies, drosophila melanogaster, at low temperature. J. Biol. Rhythms 28, 380 (2013). Scholar
  11. 11.
    C.R. Laing, Derivation of a neural field model from a network of theta neurons. Phys. Rev. E 90, 010901 (2014).
  12. 12.
    L. Schmidt, K. Schönleber, K. Krischer, V. García-Morales, Coexistence of synchrony and incoherence in oscillatory media under nonlinear global coupling. Chaos 24, 013102 (2014). Scholar
  13. 13.
    E. Gil-Santos, M. Labousse, C. Baker, A. Goetschy, W. Hease, C. Gomez, A. Lemaître, G. Leo, C. Ciuti, I. Favero, Light-mediated cascaded locking of multiple nano-optomechanical oscillators. Phys. Rev. Lett. 118, 063605 (2017).
  14. 14.
    H.W. Lau, J. Davidsen, C. Simon, Chimera patterns in conservative systems and ultracold atoms with mediated nonlocal hopping. arxiv (2017).
  15. 15.
    V. In, A. Palacios, Superconductive quantum interference devices (SQUID), In Symmetry in Complex Network Systems (Springer, Berlin, 2018), pp. 127–163. Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikTechnische Universität BerlinBerlinGermany

Personalised recommendations