Advertisement

Conclusion

  • Jan Frederik TotzEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In this thesis a number of self-organized patterns, that exhibit spatio-temporally periodic synchronized activity, are elucidated in numerical simulations and chemical experiments. Special focus is given to the propagation of excitation waves on different topologies.

References

  1. 1.
    J.F. Totz, H. Engel, O. Steinbock, Spatial confinement causes lifetime enhancement and expansion of vortex rings with positive filament tension. New J. Phys. 17, 093043 (2015). http://dx.doi.org/10.1088/1367-2630/17/9/093043ADSCrossRefGoogle Scholar
  2. 2.
    A.T. Winfree, Electrical turbulence in three-dimensional heart muscle. Science 266, 1003 (1994). http://dx.doi.org/10.1126/science.7973648ADSCrossRefGoogle Scholar
  3. 3.
    J.F. Totz, R. Snari, D. Yengi, M.R. Tinsley, H. Engel, K. Showalter, Phase-lag synchronization in networks of coupled chemical oscillators. Phys. Rev. E 92, 022819 (2015). http://dx.doi.org/10.1103/PhysRevE.92.022819
  4. 4.
    D. Rubino, K.A. Robbins, N.G. Hatsopoulos, Propagating waves mediate information transfer in the motor cortex. Nat. Neurosci. 9, 1549 (2006). http://dx.doi.org/10.1038/nn1802CrossRefGoogle Scholar
  5. 5.
    A.J. Ijspeert, Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21, 642 (2008). http://dx.doi.org/10.1016/j.neunet.2008.03.014CrossRefGoogle Scholar
  6. 6.
    Y. Kuramoto, D. Battogtokh, Coexistence of coherence and incoherence in nonlocally coupled phase oscillators. Nonlinear Phenom. Complex Syst. 5, 380 (2002). http://www.jnpcs.org/abstracts/vol2002/v5no4/v5no4p380.html
  7. 7.
    J.F. Totz, J. Rode, M.R. Tinsley, K. Showalter, H. Engel, Spiral wave chimera states in large populations of coupled chemical oscillators. Nat. Phys. 14, 282 (2018). http://dx.doi.org/10.1038/s41567-017-0005-8ADSCrossRefGoogle Scholar
  8. 8.
    A.T. Winfree, The Geometry of Biological Time, (Springer, Berlin, 2001).  https://doi.org/10.1007/978-1-4757-3484-3CrossRefGoogle Scholar
  9. 9.
    J.M. Anumonwo, M. Delmar, A. Vinet, D.C. Michaels, J. Jalife, Phase resetting and entrainment of pacemaker activity in single sinus nodal cells. Circ. Res. 68, 1138 (1991). http://dx.doi.org/10.1161/01.RES.68.4.1138CrossRefGoogle Scholar
  10. 10.
    V. Varma, N. Mukherjee, N.N. Kannan, V.K. Sharma, Strong (Type 0) phase resetting of activity-rest rhythm in fruit flies, drosophila melanogaster, at low temperature. J. Biol. Rhythms 28, 380 (2013). http://dx.doi.org/10.1177/0748730413508922CrossRefGoogle Scholar
  11. 11.
    C.R. Laing, Derivation of a neural field model from a network of theta neurons. Phys. Rev. E 90, 010901 (2014). http://dx.doi.org/10.1103/PhysRevE.90.010901
  12. 12.
    L. Schmidt, K. Schönleber, K. Krischer, V. García-Morales, Coexistence of synchrony and incoherence in oscillatory media under nonlinear global coupling. Chaos 24, 013102 (2014). http://dx.doi.org/10.1063/1.4858996MathSciNetCrossRefGoogle Scholar
  13. 13.
    E. Gil-Santos, M. Labousse, C. Baker, A. Goetschy, W. Hease, C. Gomez, A. Lemaître, G. Leo, C. Ciuti, I. Favero, Light-mediated cascaded locking of multiple nano-optomechanical oscillators. Phys. Rev. Lett. 118, 063605 (2017). http://dx.doi.org/10.1103/PhysRevLett.118.063605
  14. 14.
    H.W. Lau, J. Davidsen, C. Simon, Chimera patterns in conservative systems and ultracold atoms with mediated nonlocal hopping. arxiv (2017). http://arxiv.org/abs/1708.04375
  15. 15.
    V. In, A. Palacios, Superconductive quantum interference devices (SQUID), In Symmetry in Complex Network Systems (Springer, Berlin, 2018), pp. 127–163. http://dx.doi.org/10.1007/978-3-662-55545-3_4Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikTechnische Universität BerlinBerlinGermany

Personalised recommendations