Spiral Wave Chimera

  • Jan Frederik TotzEmail author
Part of the Springer Theses book series (Springer Theses)


A spiral wave chimera is the union of spiral waves [1] and chimeras states [2] - two paradigms in spatial pattern formation and temporal synchronization [3]. Spiral waves have been researched extensively in simulations as well as experiments during the last 70 years [4] in excitable media due to their spontaneous formation in a plethora of natural systems (see the introduction of Chap.  2 for examples). A spiral wave nucleates from the open end of an excitation wave. The open end curls in and becomes the center of the spiral wave from which waves are periodically emitted. The chimera state was numerically found by Yoshiki Kuramoto about 15 years ago (In 2001 Kuramoto presented his findings on nonlocally coupled systems, that already encompassed one- and two-dimensional problems, at a meeting named “Nonlinear Dynamics and Chaos: Where do we go from here?” in Bristol, United Kingdom. Subsequently his work, on what later became known as chimera state [5], was published as a chapter [6] in the accompanying conference monograph [7].), when he extended his model for synchronization in networks from globally to nonlocally coupled oscillators. While dissipative oscillators with identical frequencies in a globally coupled system trivially synchronize, this is not the case for nonlocal coupling. Two groups emerge: One coherent group, which is frequency-synchronized and another incoherent one, which is desynchronized.


  1. 1.
    A.T. Winfree, The Geometry of Biological Time (Springer, Berlin, 2001). Scholar
  2. 2.
    M.J. Panaggio, D.M. Abrams, Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators. Nonlinearity 28, R67 (2015). Scholar
  3. 3.
    P. Ashwin, S. Coombes, R. Nicks, Mathematical frameworks for oscillatory network dynamics in neuroscience. J. Math. Neurosci. 6, 1 (2016).
  4. 4.
    N. Wiener, A. Rosenblueth, The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle. Arch. Inst. Cardiol. Mex. 16, 205 (1946),
  5. 5.
    D.M. Abrams, S.H. Strogatz, Chimera states for coupled oscillators. Phys. Rev. Lett. 93, 174102 (2004).
  6. 6.
    Y. Kuramoto, Reduction methods applied to non-locally coupled oscillator systems, in Nonlinear Dynamics and Chaos: Where Do We Go from Here? (CRC Press, Boca Raton, 2002), pp. 209–227. Scholar
  7. 7.
    J. Hogan, A.R. Krauskopf, M. di Bernado, R.E. Wilson, H.M. Osinga, M.E. Homer, A.R. Champneys (eds.), Nonlinear Dynamics and Chaos: Where Do We Go from Here (CRC Press, Boca Raton, 2002),
  8. 8.
    E. Alvarez-Lacalle, B. Echebarria, Global coupling in excitable media provides a simplified description of mechanoelectrical feedback in cardiac tissue. Phys. Rev. E 79, 031921 (2009).
  9. 9.
    J.C. González-Avella, M.G. Cosenza, M. San Miguel, Localized coherence in two interacting populations of social agents. Phys. A 399, 24 (2014). Scholar
  10. 10.
    I.A. Shepelev, T.E. Vadivasova, A.V. Bukh, G.I. Strelkova, V.S. Anishchenko, New type of chimera structures in a ring of bistable FitzHugh–Nagumo oscillators with nonlocal interaction. Phys. Lett. A 381, 1398 (2017). Scholar
  11. 11.
    M. Zhang, G.S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, M. Lipson, Synchronization of micromechanical oscillators using light. Phys. Rev. Lett. 109, 233906 (2012).
  12. 12.
    M. Zhang, S. Shah, J. Cardenas, M. Lipson, Synchronization and phase noise reduction in micromechanical oscillator arrays coupled through light. Phys. Rev. Lett. 115, 163902 (2015).
  13. 13.
    E. Gil-Santos, M. Labousse, C. Baker, A. Goetschy, W. Hease, C. Gomez, A. Lemaître, G. Leo, C. Ciuti, I. Favero, Light-mediated cascaded locking of multiple nano-optomechanical oscillators. Phys. Rev. Lett. 118, 063605 (2017).
  14. 14.
    M. Rohden, A. Sorge, M. Timme, D. Witthaut, Self-organized synchronization in decentralized power grids. Phys. Rev. Lett. 109, 064101 (2012).
  15. 15.
    M. Trepanier, D. Zhang, O. Mukhanov, S.M. Anlage, Realization and modeling of metamaterials made of rf superconducting quantum-interference devices. Phys. Rev. X 3, 041029 (2013).
  16. 16.
    N. Lazarides, G. Neofotistos, G.P. Tsironis, Chimeras in SQUID metamaterials. Phys. Rev. B 91, 054303 (2015).
  17. 17.
    V. In, A. Palacios, Superconductive quantum interference devices (SQUID), in Symmetry in Complex Network Systems (Springer, Berlin, 2018), pp. 127–163. Scholar
  18. 18.
    S. Kaka, M.R. Pufall, W.H. Rippard, T.J. Silva, S.E. Russek, J.A. Katine, Mutual phase-locking of microwave spin torque nano-oscillators. Nature 437, 389 (2005). Scholar
  19. 19.
    M. Zaks, A. Pikovsky, Chimeras and complex cluster states in arrays of spin-torque oscillators. Sci. Rep. 7, 4648 (2017).
  20. 20.
    H.W. Lau, J. Davidsen, C. Simon, Chimera patterns in conservative systems and ultracold atoms with mediated nonlocal hopping (2017), arXiv:1708.04375
  21. 21.
    C.R. Laing, C.C. Chow, Stationary bumps in networks of spiking neurons. Neural Comput. 13, 1473 (2001), Scholar
  22. 22.
    C.R. Laing, Derivation of a neural field model from a network of theta neurons. Phys. Rev. E 90, 010901 (2014).
  23. 23.
    P.C. Bressloff, Z.P. Kilpatrick, Nonlocal Ginzburg-Landau equation for cortical pattern formation. Phys. Rev. E 78, 041916 (2008).
  24. 24.
    J. Viventi et al., Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci. 14, 1599 (2011). Scholar
  25. 25.
    R.G. Andrzejak, C. Rummel, F. Mormann, K. Schindler, All together now: analogies between chimera state collapses and epileptic seizures. Sci. Rep. 6, 23000 (2016).
  26. 26.
    N. Uchida, R. Golestanian, Synchronization and collective dynamics in a carpet of microfluidic rotors. Phys. Rev. Lett. 104, 178103 (2010).
  27. 27.
    R. Faubel, C. Westendorf, E. Bodenschatz, G. Eichele, Cilia-based flow network in the brain ventricles. Science 353, 176 (2016). Scholar
  28. 28.
    M.R. Tinsley, S. Nkomo, K. Showalter, Chimera and phase-cluster states in populations of coupled chemical oscillators. Nat. Phys. 8, 662 (2012). Scholar
  29. 29.
    S. Nkomo, M.R. Tinsley, K. Showalter, Chimera states in populations of nonlocally coupled chemical oscillators. Phys. Rev. Lett. 110, 244102 (2013).
  30. 30.
    M. Wickramasinghe, I.Z. Kiss, Spatially organized partial synchronization through the chimera mechanism in a network of electrochemical reactions. Phys. Chem. Chem. Phys. 16, 18360 (2014). Scholar
  31. 31.
    K. Schönleber, C. Zensen, A. Heinrich, K. Krischer, Pattern formation during the oscillatory photoelectrodissolution of n-type silicon: turbulence, clusters and chimeras. New J. Phys. 16, 063024 (2014). Scholar
  32. 32.
    L. Schmidt, K. Schönleber, K. Krischer, V. García-Morales, Coexistence of synchrony and incoherence in oscillatory media under nonlinear global coupling. Chaos 24, 013102 (2014). Scholar
  33. 33.
    M. Patzauer, R. Hueck, A. Tosolini, K. Schönleber, K. Krischer, Autonomous oscillations and pattern formation with zero external resistance during silicon electrodissolution. Electrochim. Acta 246, 315 (2017). Scholar
  34. 34.
    P. Kumar, D.K. Verma, P. Parmananda, Partially synchronized states in an ensemble of chemo-mechanical oscillators. Phys. Lett. A 381, 2337 (2017). Scholar
  35. 35.
    A.M. Hagerstrom, T.E. Murphy, R. Roy, P. Hövel, I. Omelchenko, E. Schöll, Experimental observation of chimeras in coupled-map lattices. Nat. Phys. 8, 658 (2012). Scholar
  36. 36.
    J.D. Hart, K. Bansal, T.E. Murphy, R. Roy, Experimental observation of chimera and cluster states in a minimal globally coupled network. Chaos 26, 094801 (2016). Scholar
  37. 37.
    E.A. Martens, S. Thutupalli, A. Fourrière, O. Hallatschek, Chimera states in mechanical oscillator networks. Proc. Natl. Acad. Sci. USA 110, 10563 (2013). Scholar
  38. 38.
    T. Kapitaniak, P. Kuzma, J. Wojewoda, K. Czolczynski, Y. Maistrenko, Imperfect chimera states for coupled pendula. Sci. Rep. 4, 6379 (2014).
  39. 39.
    J. Wojewoda, K. Czolczynski, Y. Maistrenko, T. Kapitaniak, The smallest chimera state for coupled pendula. Sci. Rep. 6, 34329 (2016).
  40. 40.
    L. Larger, B. Penkovsky, Y. Maistrenko, Virtual chimera states for delayed-feedback systems. Phys. Rev. Lett. 111, 054103 (2013).
  41. 41.
    L. Larger, B. Penkovsky, Y. Maistrenko, Laser chimeras as a paradigm for multistable patterns in complex systems. Nat. Commun. 6, 7752 (2015).
  42. 42.
    F. Rossi, S. Ristori, N. Marchettini, O.L. Pantani, Functionalized clay microparticles as catalysts for chemical oscillators. J. Phys. Chem. C 118, 24389 (2014). Scholar
  43. 43.
    L.V. Gambuzza, A. Buscarino, S. Chessari, L. Fortuna, R. Meucci, M. Frasca, Experimental investigation of chimera states with quiescent and synchronous domains in coupled electronic oscillators. Phys. Rev. E 90, 032905 (2014).
  44. 44.
    L.Q. English, A. Zampetaki, P.G. Kevrekidis, K. Skowronski, C.B. Fritz, S. Abdoulkary, Analysis and observation of moving domain fronts in a ring of coupled electronic self-oscillators. Chaos 27, 103125 (2017). Scholar
  45. 45.
    D.R. Brumley, N. Bruot, J. Kotar, R.E. Goldstein, P. Cicuta, M. Polin, Long-range interactions, wobbles, and phase defects in chains of model cilia. Phys. Rev. Fluids 1, 081201 (2016).
  46. 46.
    V.K. Vanag, L. Yang, M. Dolnik, A.M. Zhabotinsky, I.R. Epstein, Oscillatory cluster patterns in a homogeneous chemical system with global feedback. Nature 406, 389 (2000). Scholar
  47. 47.
    P. Rupp, R. Richter, I. Rehberg, Critical exponents of directed percolation measured in spatiotemporal intermittency. Phys. Rev. E 67, 036209 (2003).
  48. 48.
    L. Hall-Stoodley, J.W. Costerton, P. Stoodley, Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2, 95 (2004). Scholar
  49. 49.
    S. Bayin, Mathematical Methods in Science and Engineering (Wiley, New York, 2006),
  50. 50.
    Y. Kuramoto, S. Shima, Rotating spirals without phase singularity in reaction-diffusion systems. Prog. Theor. Phys. Suppl. 150, 115 (2003). Scholar
  51. 51.
    S. Shima, Y. Kuramoto, Rotating spiral waves with phase-randomized core in nonlocally coupled oscillators. Phys. Rev. E 69, 036213 (2004).
  52. 52.
    V. Casagrande, Synchronization, waves, and turbulence in systems of interacting chemical oscillators. Ph.D. thesis, TU Berlin, FHI (2006),
  53. 53.
    M. Hazewinkel, Diffeomorphism, in Encyclopedia of Mathematics (Springer, Berlin, 2001),
  54. 54.
    Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Springer, Berlin, 1984). Scholar
  55. 55.
    A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University Press, Cambridge, 2001),
  56. 56.
    D.M. Abrams, R. Mirollo, S.H. Strogatz, D.A. Wiley, Solvable model for chimera states of coupled oscillators. Phys. Rev. Lett. 101, 084103 (2008).
  57. 57.
    Y. Kuramoto, D. Battogtokh, Coexistence of coherence and incoherence in nonlocally coupled phase oscillators. Nonlinear Phenom. Complex Syst. 5, 380 (2002),
  58. 58.
    D.M. Abrams, S.H. Strogatz, Chimera states in a ring of nonlocally coupled oscillators. Int. J. Bifurc. Chaos 16, 21 (2006). Scholar
  59. 59.
    O.E. Omel’chenko, Y.L. Maistrenko, P.A. Tass, Chimera states: the natural link between coherence and incoherence. Phys. Rev. Lett. 100, 044105 (2008).
  60. 60.
    O.E. Omel’chenko, M. Wolfrum, Y.L. Maistrenko, Chimera states as chaotic spatiotemporal patterns. Phys. Rev. E 81, 065201 (2010).
  61. 61.
    I. Omelchenko, O.E. Omel’chenko, P. Hövel, E. Schöll, When nonlocal coupling between oscillators becomes stronger: patched synchrony or multichimera states. Phys. Rev. Lett. 110, 224101 (2013).
  62. 62.
    R.G. Andrzejak, G. Ruzzene, I. Malvestio, Generalized synchronization between chimera states. Chaos 27, 053114 (2017). Scholar
  63. 63.
    O.E. Omel’chenko, M. Wolfrum, S. Yanchuk, Y.L. Maistrenko, O. Sudakov, Stationary patterns of coherence and incoherence in two-dimensional arrays of non-locally-coupled phase oscillators. Phys. Rev. E85, 036210 (2012).
  64. 64.
    X. Tang, T. Yang, I.R. Epstein, Y. Liu, Y. Zhao, Q. Gao, Novel type of chimera spiral waves arising from decoupling of a diffusible component. J. Chem. Phys. 141, 024110 (2014). Scholar
  65. 65.
    B.-W. Li, H. Dierckx, Spiral wave chimeras in locally coupled oscillator systems. Phys. Rev. E 93, 020202 (2016).
  66. 66.
    B.P. Abbott et al., Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016).
  67. 67.
    A. Schmidt, T. Kasimatis, J. Hizanidis, A. Provata, P. Hövel, Chimera patterns in two-dimensional networks of coupled neurons. Phys. Rev. E 95, 032224 (2017).
  68. 68.
    M. Falcke, H. Engel, Influence of global coupling through the gas phase on the dynamics of CO oxidation on Pt(110). Phys. Rev. E 50, 1353 (1994). Scholar
  69. 69.
    Y. Maistrenko, O. Sudakov, O. Osiv, V. Maistrenko, Chimera states in three dimensions. New J. Phys. 17, 073037 (2015). Scholar
  70. 70.
    H.W. Lau, J. Davidsen, Linked and knotted chimera filaments in oscillatory systems. Phys. Rev. E 94, 010204 (2016).
  71. 71.
    V. Maistrenko, O. Sudakov, O. Osiv, Y. Maistrenko, Multiple scroll wave chimera states. Eur. Phys. J. Spec. Top. 226, 1867 (2017). Scholar
  72. 72.
    M. Shanahan, Metastable chimera states in community-structured oscillator networks. Chaos 20, 013108 (2010). Scholar
  73. 73.
    Y. Zhu, Z. Zheng, J. Yang, Chimera states on complex networks. Phys. Rev. E 89, 022914 (2014).
  74. 74.
    P. Ashwin, O. Burylko, Weak chimeras in minimal networks of coupled phase oscillators. Chaos 25, 013106 (2015). Scholar
  75. 75.
    X. Jiang, D.M. Abrams, Symmetry-broken states on networks of coupled oscillators. Phys. Rev. E 93, 052202 (2016).
  76. 76.
    G. Ghoshal, A.P. Muñuzuri, J. Pérez-Mercader, Emergence of a super-synchronized mobbing state in a large population of coupled chemical oscillators. Sci. Rep. 6, 19186 (2016).
  77. 77.
    J. Shena, J. Hizanidis, V. Kovanis, G.P. Tsironis, Turbulent chimeras in large semiconductor laser arrays. Sci. Rep. 7, 42116 (2017).
  78. 78.
    A. Zakharova, M. Kapeller, E. Schöll, Chimera death: symmetry breaking in dynamical networks. Phys. Rev. Lett. 112, 154101 (2014).
  79. 79.
    A. Vüllings, J. Hizanidis, I. Omelchenko, P. Hövel, Clustered chimera states in systems of type-I excitability. New J. Phys. 16, 123039 (2014). Scholar
  80. 80.
    I. Omelchenko, Y. Maistrenko, P. Hövel, E. Schöll, Loss of coherence in dynamical networks: spatial chaos and chimera states. Phys. Rev. Lett. 106, 234102 (2011).
  81. 81.
    C. Gu, G. St-Yves, J. Davidsen, Spiral wave chimeras in complex oscillatory and chaotic systems. Phys. Rev. Lett. 111, 134101 (2013).
  82. 82.
    G.C. Sethia, A. Sen, F.M. Atay, Clustered chimera states in delay-coupled oscillator systems. Phys. Rev. Lett. 100, 144102 (2008).
  83. 83.
    F. Böhm, A. Zakharova, E. Schöll, K. Lüdge, Amplitude-phase coupling drives chimera states in globally coupled laser networks. Phys. Rev. E 91, 040901 (2015).
  84. 84.
    A. Zakharova, S.A.M. Loos, J. Siebert, A. Gjurchinovski, J.C. Claussen, E. Schöll, Controlling chimera patterns in networks: interplay of structure, noise, and delay, in Control of Self-organizing Nonlinear Systems (Springer, Berlin, 2016), pp. 3–23. Scholar
  85. 85.
    S.A.M. Loos, J.C. Claussen, E. Schöll, A. Zakharova, Chimera patterns under the impact of noise. Phys. Rev. E 93, 012209 (2016).
  86. 86.
    V. Semenov, A. Zakharova, Y. Maistrenko, E. Schöll, Delayed-feedback chimera states: forced multiclusters and stochastic resonance. Europhys. Lett. 115, 10005 (2016). Scholar
  87. 87.
    N. Semenova, A. Zakharova, V. Anishchenko, E. Schöll, Coherence-resonance chimeras in a network of excitable elements. Phys. Rev. Lett. 117, 014102 (2016).
  88. 88.
    A. Buscarino, M. Frasca, L.V. Gambuzza, P. Hövel, Chimera states in time-varying complex networks. Phys. Rev. E 91, 022817 (2015).
  89. 89.
    J. Sieber, O.E. Omel’chenko, M. Wolfrum, Controlling unstable chaos: stabilizing chimera states by feedback. Phys. Rev. Lett. 112, 054102 (2014).
  90. 90.
    C. Bick, E.A. Martens, Controlling chimeras. New J. Phys. 17, 033030 (2015). Scholar
  91. 91.
    I. Omelchenko, O.E. Omel’chenko, A. Zakharova, M. Wolfrum, E. Schöll, Tweezers for chimeras in small networks. Phys. Rev. Lett. 116, 114101 (2016).
  92. 92.
    T. Isele, J. Hizanidis, A. Provata, P. Hövel, Controlling chimera states: the influence of excitable units. Phys. Rev. E 93, 022217 (2016).
  93. 93.
    F.P. Kemeth, S.W. Haugland, L. Schmidt, I.G. Kevrekidis, K. Krischer, A classification scheme for chimera states. Chaos 26, 094815 (2016). Scholar
  94. 94.
    C.R. Laing, The dynamics of chimera states in heterogeneous Kuramoto networks. Phys. D 238, 1569 (2009). Scholar
  95. 95.
    C. Laing, Chimeras in two-dimensional domains: heterogeneity and the continuum limit. SIAM J. Appl. Dyn. Syst. 16, 974 (2017). Scholar
  96. 96.
    E. Ott, T.M. Antonsen, Low dimensional behavior of large systems of globally coupled oscillators. Chaos 18, 037113 (2008). Scholar
  97. 97.
    D. Cohen, J. Neu, R. Rosales, Rotating spiral wave solutions of reaction-diffusion equations. SIAM J. Appl. Math. 35, 536 (1978). Scholar
  98. 98.
    E.A. Martens, C.R. Laing, S.H. Strogatz, Solvable model of spiral wave chimeras. Phys. Rev. Lett. 104, 044101 (2010).
  99. 99.
    J.F. Totz, R. Snari, D. Yengi, M.R. Tinsley, H. Engel, K. Showalter, Phase-lag synchronization in networks of coupled chemical oscillators. Phys. Rev. E 92, 022819 (2015).
  100. 100.
    N. Tompkins, N. Li, C. Girabawe, M. Heymann, G.B. Ermentrout, I.R. Epstein, S. Fraden, Testing Turing’s theory of morphogenesis in chemical cells. Proc. Natl. Acad. Sci. USA 111, 4397 (2014). Scholar
  101. 101.
    I.Z. Kiss, Y. Zhai, J.L. Hudson, Emerging coherence in a population of chemical oscillators. Science 296, 1676 (2002). Scholar
  102. 102.
    D.K. Verma, H. Singh, P. Parmananda, A.Q. Contractor, M. Rivera, Kuramoto transition in an ensemble of mercury beating heart systems. Chaos 25, 064609 (2015). Scholar
  103. 103.
    P.R. Buskohl, R.C. Kramb, R.A. Vaia, Synchronicity in composite hydrogels: Belousov–Zhabotinsky (BZ) active nodes in gelatin. J. Phys. Chem. B 119, 3595 (2015). Scholar
  104. 104.
    D.P. Rosin, D. Rontani, N.D. Haynes, E. Schöll, D.J. Gauthier, Transient scaling and resurgence of chimera states in networks of Boolean phase oscillators. Phys. Rev. E 90, 030902 (2014).
  105. 105.
    H. Brandtstädter, M. Braune, I. Schebesch, H. Engel, Experimental study of the dynamics of spiral pairs in light-sensitive Belousov–Zhabotinskii media using an open-gel reactor. Chem. Phys. Lett. 323, 145 (2000). Scholar
  106. 106.
    M.R. Tinsley, A.F. Taylor, Z. Huang, K. Showalter, Emergence of collective behavior in groups of excitable catalyst-loaded particles: spatiotemporal dynamical quorum sensing. Phys. Rev. Lett. 102, 158301 (2009).
  107. 107.
    B. Neumann, Z. Nagy-Ungvarai, S. Müller, Interaction between silica gel matrices and the Belousov-Zhabotinsky reaction. Chem. Phys. Lett. 211, 36 (1993). Scholar
  108. 108.
    S.C. Müller, T. Plesser, B. Hess, Two-dimensional spectrophotometry and pseudo-color representation of chemical reaction patterns. Sci. Nat. 73, 165 (1986).
  109. 109.
    A.-L. Barabási, E. Bonabeau, Scale-free networks. Sci. Am. 288, 60 (2003). Scholar
  110. 110.
    D.J. Watts, S.H. Strogatz, Collective dynamics of ‘small-world’ networks. Nature 393, 440 (1998). Scholar
  111. 111.
    L.M. Pecora, F. Sorrentino, A.M. Hagerstrom, T.E. Murphy, R. Roy, Cluster synchronization and isolated desynchronization in complex networks with symmetries. Nat. Commun. 5, 4079 (2014).
  112. 112.
    D. Witthaut, M. Timme, Braess’s paradox in oscillator networks, desynchronization and power outage. New J. Phys. 14, 083036 (2012). Scholar
  113. 113.
    L.R. Varshney, B.L. Chen, E. Paniagua, D.H. Hall, D.B. Chklovskii, Structural properties of the Caenorhabditis elegans neuronal network. PLOS Comput. Biol. 7, e1001066 (2011). Scholar
  114. 114.
    T.A. Jarrell, Y. Wang, A.E. Bloniarz, C.A. Brittin, M. Xu, J.N. Thomson, D.G. Albertson, D.H. Hall, S.W. Emmons, The connectome of a decision-making neural network. Science 337, 437 (2012). Scholar
  115. 115.
    P. Hänggi, P. Jung, Colored noise in dynamical systems, in Advances in Chemical Physics, vol. 89, ed. by I. Prigogine, S.A. Rice (Wiley, New York, 1994), pp. 239–326. Scholar
  116. 116.
    N.G.V. Kampen, Stochastic Processes in Physics and Chemistry (Elsevier, Amsterdam, 2011),
  117. 117.
    K. Yoshikawa, R. Aihara, K. Agladze, Size-dependent Belousov-Zhabotinsky oscillation in small beads. J. Phys. Chem. A 102, 7649 (1998). Scholar
  118. 118.
    A.M. Zhabotinsky, F. Buchholtz, A.B. Kiyatkin, I.R. Epstein, Oscillations and waves in metal-ion-catalyzed bromate oscillating reactions in highly oxidized states. J. Phys. Chem. 97, 7578 (1993). Scholar
  119. 119.
    R. Toth, A.F. Taylor, M.R. Tinsley, Collective behavior of a population of chemically coupled oscillators. J. Phys. Chem. B 110, 10170 (2006). Scholar
  120. 120.
    S. Kádár, T. Amemiya, K. Showalter, Reaction mechanism for light sensitivity of the Ru(bpy)32+-catalyzed Belousov-Zhabotinsky reaction. J. Phys. Chem. A 101, 8200 (1997). Scholar
  121. 121.
    W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, Cambridge, 2007),
  122. 122.
    I. Omelchenko, A. Zakharova, P. Hövel, J. Siebert, E. Schöll, Nonlinearity of local dynamics promotes multi-chimeras. Chaos 25, 083104 (2015). Scholar
  123. 123.
    I. Omelchenko, A. Provata, J. Hizanidis, E. Schöll, P. Hövel, Robustness of chimera states for coupled FitzHugh-Nagumo oscillators. Phys. Rev. E 91, 022917 (2015).
  124. 124.
    A.S. Mikhailov, Foundations of Synergetics I: Distributed Active Systems (Springer, Berlin, 1990). Scholar
  125. 125.
    M.-A. Bray, J.P. Wikswo, Use of topological charge to determine filament location and dynamics in a numerical model of scroll wave activity. IEEE Trans. Biomed. Eng. 49, 1086 (2002). Scholar
  126. 126.
    M.J. Panaggio, D.M. Abrams, Chimera states on the surface of a sphere. Phys. Rev. E 91, 022909 (2015).
  127. 127.
    H. Daido, Order function and macroscopic mutual entrainment in uniformly coupled limit-cycle oscillators. Prog. Theor. Phys. 88, 1213 (1992). Scholar
  128. 128.
    J.F. Totz, J. Rode, M.R. Tinsley, K. Showalter, H. Engel, Spiral wave chimera states in large populations of coupled chemical oscillators. Nat. Phys. 14, 282 (2018). Scholar
  129. 129.
    A.T. Winfree, Varieties of spiral wave behavior: an experimentalist’s approach to the theory of excitable media. Chaos 1, 303 (1991). Scholar
  130. 130.
    D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Academic, New York, 2001),
  131. 131.
    D. Barkley, M. Kness, L.S. Tuckerman, Spiral-wave dynamics in a simple model of excitable media: the transition from simple to compound rotation. Phys. Rev. A 42, 2489 (1990). Scholar
  132. 132.
    W. Jahnke, W.E. Skaggs, A.T. Winfree, Chemical vortex dynamics in the Belousov-Zhabotinskii reaction and in the two-variable Oregonator model. J. Phys. Chem.93, 740 (1989). Scholar
  133. 133.
    D. Barkley, Euclidean symmetry and the dynamics of rotating spiral waves. Phys. Rev. Lett. 72, 164 (1994). Scholar
  134. 134.
    M. Wolfrum, O.E. Omel’chenko, Chimera states are chaotic transients. Phys. Rev. E 84, 015201 (2011).
  135. 135.
    Y.L. Maistrenko, A. Vasylenko, O. Sudakov, R. Levchenko, V.L. Maistrenko, Cascades of multiheaded chimera states for coupled phase oscillators. Int. J. Bifurc. Chaos 24, 1440014 (2014). Scholar
  136. 136.
    I. Sendiña-Nadal, S. Alonso, V. Pérez-Muñuzuri, M. Gómez-Gesteira, V. Pérez-Villar, L. Ramírez-Piscina, J. Casademunt, J.M. Sancho, F. Sagués, Brownian motion of spiral waves driven by spatiotemporal structured noise. Phys. Rev. Lett. 84, 2734 (2000). Scholar
  137. 137.
    I.V. Biktasheva, V.N. Biktashev, Wave-particle dualism of spiral waves dynamics. Phys. Rev. E 67, 026221 (2003).
  138. 138.
    C. Brito, I.S. Aranson, H. Chaté, Vortex glass and vortex liquid in oscillatory media. Phys. Rev. Lett. 90, 068301 (2003).
  139. 139.
    M. Bär, M. Eiswirth, Turbulence due to spiral breakup in a continuous excitable medium. Phys. Rev. E 48, R1635 (1993). Scholar
  140. 140.
    M. Bär, L. Brusch, Breakup of spiral waves caused by radial dynamics: Eckhaus and finite wavenumber instabilities. New J. Phys. 6, 5 (2004). Scholar
  141. 141.
    R. Kapral, R. Livi, G.-L. Oppo, A. Politi, Dynamics of complex interfaces. Phys. Rev. E 49, 2009 (1994). Scholar
  142. 142.
    Z. Nagy-Ungvarai, S. Müller, Characterization of wave front instabilities in the Belousov-Zhabotinsky reaction: an overview. Int. J. Bifurc. Chaos 04, 1257 (1994). Scholar
  143. 143.
    L. Glass, M.C. Mackey, From Clocks to Chaos: The Rhythms of Life (Princeton University Press, Princeton, 1988),
  144. 144.
    E.M. Izhikevich, Dynamical Systems in Neuroscience (MIT Press, Cambridge, 2007),
  145. 145.
    N.W. Schultheiss, A.A. Prinz, R.J. Butera, Phase Response Curves in Neuroscience: Theory, Experiment, and Analysis, vol. 6 (Springer, Berlin, 2011). Scholar
  146. 146.
    L. Glass, A.T. Winfree, Discontinuities in phase-resetting experiments. Am. J. Physiol. Regul. Integr. Comp. Physiol. 246, R251 (1984), Scholar
  147. 147.
    J. Jalife, G.K. Moe, Effect of electrotonic potentials on pacemaker activity of canine Purkinje fibers in relation to parasystole. Circ. Res. 39, 801 (1976). Scholar
  148. 148.
    M.R. Guevara, A. Shrier, L. Glass, Phase resetting of spontaneously beating embryonic ventricular heart cell aggregates. Am. J. Physiol. Heart Circ. Physiol. 251, H1298 (1986). Scholar
  149. 149.
    J.M. Anumonwo, M. Delmar, A. Vinet, D.C. Michaels, J. Jalife, Phase resetting and entrainment of pacemaker activity in single sinus nodal cells. Circ. Res. 68, 1138 (1991). Scholar
  150. 150.
    D.F. Russell, Respiratory pattern generation in adult lampreys (Lampetra fluviatilis): interneurons and burst resetting. J. Comp. Physiol. 158, 91 (1986). Scholar
  151. 151.
    R. Wessel, In vitro study of phase resetting and phase locking in a time-comparison circuit in the electric fish, Eigenmannia. Biophys. J. 69, 1880 (1995). Scholar
  152. 152.
    A.A. Prinz, V. Thirumalai, E. Marder, The functional consequences of changes in the strength and duration of synaptic inputs to oscillatory neurons. J. Neurosci. 23, 943 (2003), Scholar
  153. 153.
    S.B.S. Khalsa, M.E. Jewett, C. Cajochen, C.A. Czeisler, A phase response curve to single bright light pulses in human subjects. J. Physiol. 549, 945 (2003). Scholar
  154. 154.
    C.H. Johnson, J.W. Hastings, Circadian phototransduction: phase resetting and frequency of the circadian clock of Gonyaulax cells in red light. J. Biol. Rhythm. 4, 417 (1989). Scholar
  155. 155.
    V. Varma, N. Mukherjee, N.N. Kannan, V.K. Sharma, Strong (type 0) phase resetting of activity-rest rhythm in fruit flies, Drosophila melanogaster, at low temperature. J. Biol. Rhythm. 28, 380 (2013). Scholar
  156. 156.
    J. Rode, Synchronization in heterogeneous networks - from phase to relaxation oscillators. M.Sc. thesis, TU Berlin (2016)Google Scholar
  157. 157.
    V. Zykov, H. Engel, Feedback-mediated control of spiral waves. Phys. D 199, 243 (2004). Scholar
  158. 158.
    V. Zykov, G. Bordiougov, H. Brandtstädter, I. Gerdes, H. Engel, Global control of spiral wave dynamics in an excitable domain of circular and elliptical shape. Phys. Rev. Lett. 92, 018304 (2004).
  159. 159.
    J. Schlesner, V.S. Zykov, H. Brandtstädter, I. Gerdes, H. Engel, Efficient control of spiral wave location in an excitable medium with localized heterogeneities. New J. Phys. 10, 015003 (2008). Scholar
  160. 160.
    J.F. Totz, Wechselwirkung spiralförmiger Erregungswellen mit kreisförmigen Heterogenitäten. B.Sc. thesis, TU Berlin, Berlin (2011)Google Scholar
  161. 161.
    E. Nakouzi, J.F. Totz, Z. Zhang, O. Steinbock, H. Engel, Hysteresis and drift of spiral waves near heterogeneities: from chemical experiments to cardiac simulations. Phys. Rev. E 93, 022203 (2016).
  162. 162.
    S. Alonso, M. Bär, Reentry near the percolation threshold in a heterogeneous discrete model for cardiac tissue. Phys. Rev. Lett. 110, 158101 (2013).
  163. 163.
    A. Rothkegel, K. Lehnertz, Irregular macroscopic dynamics due to chimera states in small-world networks of pulse-coupled oscillators. New J. Phys. 16, 055006 (2014). Scholar
  164. 164.
    S.-Y. Takemura et al., A visual motion detection circuit suggested by Drosophila connectomics. Nature 500, 175 (2013). Scholar
  165. 165.
    Y. Chen, S. Wang, C.C. Hilgetag, C. Zhou, Features of spatial and functional segregation and integration of the primate connectome revealed by trade-off between wiring cost and efficiency. PLOS Comput. Biol. 13, e1005776 (2017). Scholar
  166. 166.
    T.V.P. Bliss, T. Lømo, Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 232, 331 (1973). Scholar
  167. 167.
    S. Boccaletti, J.A. Almendral, S. Guan, I. Leyva, Z. Liu, I. Sendiña-Nadal, Z. Wang, Y. Zou, Explosive transitions in complex networks’ structure and dynamics: percolation and synchronization. Phys. Rep. 660, 1 (2016). Scholar
  168. 168.
    B. Pietras, N. Deschle, A. Daffertshofer, Equivalence of coupled networks and networks with multimodal frequency distributions: conditions for the bimodal and trimodal case. Phys. Rev. E 94, 052211 (2016).
  169. 169.
    S.M. Bohte, J.N. Kok, H. La Poutré, Error-backpropagation in temporally encoded networks of spiking neurons. Neurocomputing 48, 17 (2002). Scholar
  170. 170.
    R. Bates, O. Blyuss, A. Zaikin, Stochastic resonance in an intracellular genetic perceptron. Phys. Rev. E 89, 032716 (2014).
  171. 171.
    L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Stochastic resonance. Rev. Mod. Phys. 70, 223 (1998). Scholar
  172. 172.
    H. Gang, T. Ditzinger, C.Z. Ning, H. Haken, Stochastic resonance without external periodic force. Phys. Rev. Lett. 71, 807 (1993). Scholar
  173. 173.
    A.S. Pikovsky, J. Kurths, Coherence resonance in a noise-driven excitable system. Phys. Rev. Lett. 78, 775 (1997). Scholar
  174. 174.
    K. Wimmer, D.Q. Nykamp, C. Constantinidis, A. Compte, Bump attractor dynamics in prefrontal cortex explains behavioral precision in spatial working memory. Nat. Neurosci. 17, 431 (2014). Scholar
  175. 175.
    A.J. Ijspeert, Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21, 642 (2008). Scholar
  176. 176.
    A.H. Cohen, P. Wallén, The neuronal correlate of locomotion in fish. Exp. Brain Res. 41, 11 (1980).
  177. 177.
    I. Delvolvé, P. Branchereau, R. Dubuc, J.-M. Cabelguen, Fictive rhythmic motor patterns induced by NMDA in an in vitro brain stem–spinal cord preparation from an adult urodele. J. Neurophysiol. 82, 1074 (1999), Scholar
  178. 178.
    S. Steingrube, M. Timme, F. Wörgötter, P. Manoonpong, Self-organized adaptation of a simple neural circuit enables complex robot behaviour. Nat. Phys. 6, 224 (2010). Scholar
  179. 179.
    N.E. Kouvaris, T. Isele, A.S. Mikhailov, E. Schöll, Propagation failure of excitation waves on trees and random networks. Europhys. Lett. 106, 68001 (2014). Scholar
  180. 180.
    M. Salathé, M. Kazandjieva, J.W. Lee, P. Levis, M.W. Feldman, J.H. Jones, A high-resolution human contact network for infectious disease transmission. Proc. Natl. Acad. Sci. USA 107, 22020 (2010). Scholar
  181. 181.
    D. Brockmann, D. Helbing, The hidden geometry of complex, network-driven contagion phenomena. Science 342, 1337 (2013). Scholar
  182. 182.
    T.W. Valente, Network Models of the Diffusion of Innovations (Hampton Press, Cresskill, 1995)Google Scholar
  183. 183.
    E.R. Kandel, J.H. Schwartz, T.M. Jessell, S.A. Siegelbaum, A.J. Hudspeth (eds.), Principles of Neural Science (McGraw-Hill, New York, 2012),
  184. 184.
    A.E. Pereda, Electrical synapses and their functional interactions with chemical synapses. Nat. Rev. Neurosci. 15, 250 (2014). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikTechnische Universität BerlinBerlinGermany

Personalised recommendations