Advertisement

Spiral Wave Chimera

  • Jan Frederik TotzEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

A spiral wave chimera is the union of spiral waves [1] and chimeras states [2] - two paradigms in spatial pattern formation and temporal synchronization [3]. Spiral waves have been researched extensively in simulations as well as experiments during the last 70 years [4] in excitable media due to their spontaneous formation in a plethora of natural systems (see the introduction of Chap.  2 for examples). A spiral wave nucleates from the open end of an excitation wave. The open end curls in and becomes the center of the spiral wave from which waves are periodically emitted. The chimera state was numerically found by Yoshiki Kuramoto about 15 years ago (In 2001 Kuramoto presented his findings on nonlocally coupled systems, that already encompassed one- and two-dimensional problems, at a meeting named “Nonlinear Dynamics and Chaos: Where do we go from here?” in Bristol, United Kingdom. Subsequently his work, on what later became known as chimera state [5], was published as a chapter [6] in the accompanying conference monograph [7].), when he extended his model for synchronization in networks from globally to nonlocally coupled oscillators. While dissipative oscillators with identical frequencies in a globally coupled system trivially synchronize, this is not the case for nonlocal coupling. Two groups emerge: One coherent group, which is frequency-synchronized and another incoherent one, which is desynchronized.

References

  1. 1.
    A.T. Winfree, The Geometry of Biological Time (Springer, Berlin, 2001).  https://doi.org/10.1007/978-1-4757-3484-3zbMATHCrossRefGoogle Scholar
  2. 2.
    M.J. Panaggio, D.M. Abrams, Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators. Nonlinearity 28, R67 (2015).  https://doi.org/10.1088/0951-7715/28/3/R67ADSMathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    P. Ashwin, S. Coombes, R. Nicks, Mathematical frameworks for oscillatory network dynamics in neuroscience. J. Math. Neurosci. 6, 1 (2016).  https://doi.org/10.1186/s13408-015-0033-6
  4. 4.
    N. Wiener, A. Rosenblueth, The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle. Arch. Inst. Cardiol. Mex. 16, 205 (1946), https://www.ncbi.nlm.nih.gov/pubmed/20245817
  5. 5.
    D.M. Abrams, S.H. Strogatz, Chimera states for coupled oscillators. Phys. Rev. Lett. 93, 174102 (2004).  https://doi.org/10.1103/PhysRevLett.93.174102
  6. 6.
    Y. Kuramoto, Reduction methods applied to non-locally coupled oscillator systems, in Nonlinear Dynamics and Chaos: Where Do We Go from Here? (CRC Press, Boca Raton, 2002), pp. 209–227.  https://doi.org/10.1201/9781420033830.ch9Google Scholar
  7. 7.
    J. Hogan, A.R. Krauskopf, M. di Bernado, R.E. Wilson, H.M. Osinga, M.E. Homer, A.R. Champneys (eds.), Nonlinear Dynamics and Chaos: Where Do We Go from Here (CRC Press, Boca Raton, 2002), https://www.crcpress.com/Nonlinear-Dynamics-and-Chaos-Where-do-we-go-from-here/Hogan-Krauskopf-Bernado-Wilson-Osinga-Homer-Champneys/p/book/9780750308625
  8. 8.
    E. Alvarez-Lacalle, B. Echebarria, Global coupling in excitable media provides a simplified description of mechanoelectrical feedback in cardiac tissue. Phys. Rev. E 79, 031921 (2009).  https://doi.org/10.1103/PhysRevE.79.031921
  9. 9.
    J.C. González-Avella, M.G. Cosenza, M. San Miguel, Localized coherence in two interacting populations of social agents. Phys. A 399, 24 (2014).  https://doi.org/10.1016/j.physa.2013.12.035ADSCrossRefGoogle Scholar
  10. 10.
    I.A. Shepelev, T.E. Vadivasova, A.V. Bukh, G.I. Strelkova, V.S. Anishchenko, New type of chimera structures in a ring of bistable FitzHugh–Nagumo oscillators with nonlocal interaction. Phys. Lett. A 381, 1398 (2017).  https://doi.org/10.1016/j.physleta.2017.02.034ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    M. Zhang, G.S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, M. Lipson, Synchronization of micromechanical oscillators using light. Phys. Rev. Lett. 109, 233906 (2012).  https://doi.org/10.1103/PhysRevLett.109.233906
  12. 12.
    M. Zhang, S. Shah, J. Cardenas, M. Lipson, Synchronization and phase noise reduction in micromechanical oscillator arrays coupled through light. Phys. Rev. Lett. 115, 163902 (2015).  https://doi.org/10.1103/PhysRevLett.115.163902
  13. 13.
    E. Gil-Santos, M. Labousse, C. Baker, A. Goetschy, W. Hease, C. Gomez, A. Lemaître, G. Leo, C. Ciuti, I. Favero, Light-mediated cascaded locking of multiple nano-optomechanical oscillators. Phys. Rev. Lett. 118, 063605 (2017).  https://doi.org/10.1103/PhysRevLett.118.063605
  14. 14.
    M. Rohden, A. Sorge, M. Timme, D. Witthaut, Self-organized synchronization in decentralized power grids. Phys. Rev. Lett. 109, 064101 (2012).  https://doi.org/10.1103/PhysRevLett.109.064101
  15. 15.
    M. Trepanier, D. Zhang, O. Mukhanov, S.M. Anlage, Realization and modeling of metamaterials made of rf superconducting quantum-interference devices. Phys. Rev. X 3, 041029 (2013).  https://doi.org/10.1103/PhysRevX.3.041029
  16. 16.
    N. Lazarides, G. Neofotistos, G.P. Tsironis, Chimeras in SQUID metamaterials. Phys. Rev. B 91, 054303 (2015).  https://doi.org/10.1103/PhysRevB.91.054303
  17. 17.
    V. In, A. Palacios, Superconductive quantum interference devices (SQUID), in Symmetry in Complex Network Systems (Springer, Berlin, 2018), pp. 127–163.  https://doi.org/10.1007/978-3-662-55545-3_4Google Scholar
  18. 18.
    S. Kaka, M.R. Pufall, W.H. Rippard, T.J. Silva, S.E. Russek, J.A. Katine, Mutual phase-locking of microwave spin torque nano-oscillators. Nature 437, 389 (2005).  https://doi.org/10.1038/nature04035ADSCrossRefGoogle Scholar
  19. 19.
    M. Zaks, A. Pikovsky, Chimeras and complex cluster states in arrays of spin-torque oscillators. Sci. Rep. 7, 4648 (2017).  https://doi.org/10.1038/s41598-017-04918-9
  20. 20.
    H.W. Lau, J. Davidsen, C. Simon, Chimera patterns in conservative systems and ultracold atoms with mediated nonlocal hopping (2017), arXiv:1708.04375
  21. 21.
    C.R. Laing, C.C. Chow, Stationary bumps in networks of spiking neurons. Neural Comput. 13, 1473 (2001), http://www.mitpressjournals.org/doi/abs/10.1162/089976601750264974zbMATHCrossRefGoogle Scholar
  22. 22.
    C.R. Laing, Derivation of a neural field model from a network of theta neurons. Phys. Rev. E 90, 010901 (2014).  https://doi.org/10.1103/PhysRevE.90.010901
  23. 23.
    P.C. Bressloff, Z.P. Kilpatrick, Nonlocal Ginzburg-Landau equation for cortical pattern formation. Phys. Rev. E 78, 041916 (2008).  https://doi.org/10.1103/PhysRevE.78.041916
  24. 24.
    J. Viventi et al., Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci. 14, 1599 (2011).  https://doi.org/10.1038/nn.2973CrossRefGoogle Scholar
  25. 25.
    R.G. Andrzejak, C. Rummel, F. Mormann, K. Schindler, All together now: analogies between chimera state collapses and epileptic seizures. Sci. Rep. 6, 23000 (2016).  https://doi.org/10.1038/srep23000
  26. 26.
    N. Uchida, R. Golestanian, Synchronization and collective dynamics in a carpet of microfluidic rotors. Phys. Rev. Lett. 104, 178103 (2010).  https://doi.org/10.1103/PhysRevLett.104.178103
  27. 27.
    R. Faubel, C. Westendorf, E. Bodenschatz, G. Eichele, Cilia-based flow network in the brain ventricles. Science 353, 176 (2016).  https://doi.org/10.1126/science.aae0450ADSCrossRefGoogle Scholar
  28. 28.
    M.R. Tinsley, S. Nkomo, K. Showalter, Chimera and phase-cluster states in populations of coupled chemical oscillators. Nat. Phys. 8, 662 (2012).  https://doi.org/10.1038/nphys2371ADSCrossRefGoogle Scholar
  29. 29.
    S. Nkomo, M.R. Tinsley, K. Showalter, Chimera states in populations of nonlocally coupled chemical oscillators. Phys. Rev. Lett. 110, 244102 (2013).  https://doi.org/10.1103/PhysRevLett.110.244102
  30. 30.
    M. Wickramasinghe, I.Z. Kiss, Spatially organized partial synchronization through the chimera mechanism in a network of electrochemical reactions. Phys. Chem. Chem. Phys. 16, 18360 (2014).  https://doi.org/10.1039/C4CP02249ACrossRefGoogle Scholar
  31. 31.
    K. Schönleber, C. Zensen, A. Heinrich, K. Krischer, Pattern formation during the oscillatory photoelectrodissolution of n-type silicon: turbulence, clusters and chimeras. New J. Phys. 16, 063024 (2014).  https://doi.org/10.1088/1367-2630/16/6/063024ADSCrossRefGoogle Scholar
  32. 32.
    L. Schmidt, K. Schönleber, K. Krischer, V. García-Morales, Coexistence of synchrony and incoherence in oscillatory media under nonlinear global coupling. Chaos 24, 013102 (2014).  https://doi.org/10.1063/1.4858996MathSciNetCrossRefGoogle Scholar
  33. 33.
    M. Patzauer, R. Hueck, A. Tosolini, K. Schönleber, K. Krischer, Autonomous oscillations and pattern formation with zero external resistance during silicon electrodissolution. Electrochim. Acta 246, 315 (2017).  https://doi.org/10.1016/j.electacta.2017.06.005CrossRefGoogle Scholar
  34. 34.
    P. Kumar, D.K. Verma, P. Parmananda, Partially synchronized states in an ensemble of chemo-mechanical oscillators. Phys. Lett. A 381, 2337 (2017).  https://doi.org/10.1016/j.physleta.2017.05.032ADSCrossRefGoogle Scholar
  35. 35.
    A.M. Hagerstrom, T.E. Murphy, R. Roy, P. Hövel, I. Omelchenko, E. Schöll, Experimental observation of chimeras in coupled-map lattices. Nat. Phys. 8, 658 (2012).  https://doi.org/10.1038/nphys2372ADSCrossRefGoogle Scholar
  36. 36.
    J.D. Hart, K. Bansal, T.E. Murphy, R. Roy, Experimental observation of chimera and cluster states in a minimal globally coupled network. Chaos 26, 094801 (2016).  https://doi.org/10.1063/1.4953662MathSciNetCrossRefGoogle Scholar
  37. 37.
    E.A. Martens, S. Thutupalli, A. Fourrière, O. Hallatschek, Chimera states in mechanical oscillator networks. Proc. Natl. Acad. Sci. USA 110, 10563 (2013).  https://doi.org/10.1073/pnas.1302880110ADSCrossRefGoogle Scholar
  38. 38.
    T. Kapitaniak, P. Kuzma, J. Wojewoda, K. Czolczynski, Y. Maistrenko, Imperfect chimera states for coupled pendula. Sci. Rep. 4, 6379 (2014).  https://doi.org/10.1038/srep06379
  39. 39.
    J. Wojewoda, K. Czolczynski, Y. Maistrenko, T. Kapitaniak, The smallest chimera state for coupled pendula. Sci. Rep. 6, 34329 (2016).  https://doi.org/10.1038/srep34329
  40. 40.
    L. Larger, B. Penkovsky, Y. Maistrenko, Virtual chimera states for delayed-feedback systems. Phys. Rev. Lett. 111, 054103 (2013).  https://doi.org/10.1103/PhysRevLett.111.054103
  41. 41.
    L. Larger, B. Penkovsky, Y. Maistrenko, Laser chimeras as a paradigm for multistable patterns in complex systems. Nat. Commun. 6, 7752 (2015).  https://doi.org/10.1038/ncomms8752
  42. 42.
    F. Rossi, S. Ristori, N. Marchettini, O.L. Pantani, Functionalized clay microparticles as catalysts for chemical oscillators. J. Phys. Chem. C 118, 24389 (2014).  https://doi.org/10.1021/jp5032724CrossRefGoogle Scholar
  43. 43.
    L.V. Gambuzza, A. Buscarino, S. Chessari, L. Fortuna, R. Meucci, M. Frasca, Experimental investigation of chimera states with quiescent and synchronous domains in coupled electronic oscillators. Phys. Rev. E 90, 032905 (2014).  https://doi.org/10.1103/PhysRevE.90.032905
  44. 44.
    L.Q. English, A. Zampetaki, P.G. Kevrekidis, K. Skowronski, C.B. Fritz, S. Abdoulkary, Analysis and observation of moving domain fronts in a ring of coupled electronic self-oscillators. Chaos 27, 103125 (2017).  https://doi.org/10.1063/1.5009088MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    D.R. Brumley, N. Bruot, J. Kotar, R.E. Goldstein, P. Cicuta, M. Polin, Long-range interactions, wobbles, and phase defects in chains of model cilia. Phys. Rev. Fluids 1, 081201 (2016).  https://doi.org/10.1103/PhysRevFluids.1.081201
  46. 46.
    V.K. Vanag, L. Yang, M. Dolnik, A.M. Zhabotinsky, I.R. Epstein, Oscillatory cluster patterns in a homogeneous chemical system with global feedback. Nature 406, 389 (2000).  https://doi.org/10.1038/35019038ADSCrossRefGoogle Scholar
  47. 47.
    P. Rupp, R. Richter, I. Rehberg, Critical exponents of directed percolation measured in spatiotemporal intermittency. Phys. Rev. E 67, 036209 (2003).  https://doi.org/10.1103/PhysRevE.67.036209
  48. 48.
    L. Hall-Stoodley, J.W. Costerton, P. Stoodley, Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2, 95 (2004).  https://doi.org/10.1038/nrmicro821CrossRefGoogle Scholar
  49. 49.
    S. Bayin, Mathematical Methods in Science and Engineering (Wiley, New York, 2006), http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470041420.html
  50. 50.
    Y. Kuramoto, S. Shima, Rotating spirals without phase singularity in reaction-diffusion systems. Prog. Theor. Phys. Suppl. 150, 115 (2003).  https://doi.org/10.1143/PTPS.150.115ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    S. Shima, Y. Kuramoto, Rotating spiral waves with phase-randomized core in nonlocally coupled oscillators. Phys. Rev. E 69, 036213 (2004).  https://doi.org/10.1103/PhysRevE.69.036213
  52. 52.
    V. Casagrande, Synchronization, waves, and turbulence in systems of interacting chemical oscillators. Ph.D. thesis, TU Berlin, FHI (2006), https://depositonce.tu-berlin.de/handle/11303/1642
  53. 53.
    M. Hazewinkel, Diffeomorphism, in Encyclopedia of Mathematics (Springer, Berlin, 2001), https://www.encyclopediaofmath.org/index.php/Diffeomorphism
  54. 54.
    Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Springer, Berlin, 1984).  https://doi.org/10.1007/978-3-642-69689-3CrossRefzbMATHGoogle Scholar
  55. 55.
    A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University Press, Cambridge, 2001), http://www.cambridge.org/de/academic/subjects/physics/nonlinear-science-and-fluid-dynamics/synchronization-universal-concept-nonlinear-sciences?format=PB&isbn=9780521533522
  56. 56.
    D.M. Abrams, R. Mirollo, S.H. Strogatz, D.A. Wiley, Solvable model for chimera states of coupled oscillators. Phys. Rev. Lett. 101, 084103 (2008).  https://doi.org/10.1103/PhysRevLett.101.084103
  57. 57.
    Y. Kuramoto, D. Battogtokh, Coexistence of coherence and incoherence in nonlocally coupled phase oscillators. Nonlinear Phenom. Complex Syst. 5, 380 (2002), http://www.j-npcs.org/abstracts/vol2002/v5no4/v5no4p380.html
  58. 58.
    D.M. Abrams, S.H. Strogatz, Chimera states in a ring of nonlocally coupled oscillators. Int. J. Bifurc. Chaos 16, 21 (2006).  https://doi.org/10.1142/S0218127406014551ADSMathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    O.E. Omel’chenko, Y.L. Maistrenko, P.A. Tass, Chimera states: the natural link between coherence and incoherence. Phys. Rev. Lett. 100, 044105 (2008).  https://doi.org/10.1103/PhysRevLett.100.044105
  60. 60.
    O.E. Omel’chenko, M. Wolfrum, Y.L. Maistrenko, Chimera states as chaotic spatiotemporal patterns. Phys. Rev. E 81, 065201 (2010).  https://doi.org/10.1103/PhysRevE.81.065201
  61. 61.
    I. Omelchenko, O.E. Omel’chenko, P. Hövel, E. Schöll, When nonlocal coupling between oscillators becomes stronger: patched synchrony or multichimera states. Phys. Rev. Lett. 110, 224101 (2013).  https://doi.org/10.1103/PhysRevLett.110.224101
  62. 62.
    R.G. Andrzejak, G. Ruzzene, I. Malvestio, Generalized synchronization between chimera states. Chaos 27, 053114 (2017).  https://doi.org/10.1063/1.4983841MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    O.E. Omel’chenko, M. Wolfrum, S. Yanchuk, Y.L. Maistrenko, O. Sudakov, Stationary patterns of coherence and incoherence in two-dimensional arrays of non-locally-coupled phase oscillators. Phys. Rev. E85, 036210 (2012).  https://doi.org/10.1103/PhysRevE.85.036210
  64. 64.
    X. Tang, T. Yang, I.R. Epstein, Y. Liu, Y. Zhao, Q. Gao, Novel type of chimera spiral waves arising from decoupling of a diffusible component. J. Chem. Phys. 141, 024110 (2014).  https://doi.org/10.1063/1.4886395ADSCrossRefGoogle Scholar
  65. 65.
    B.-W. Li, H. Dierckx, Spiral wave chimeras in locally coupled oscillator systems. Phys. Rev. E 93, 020202 (2016).  https://doi.org/10.1103/PhysRevE.93.020202
  66. 66.
    B.P. Abbott et al., Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016).  https://doi.org/10.1103/PhysRevLett.116.061102
  67. 67.
    A. Schmidt, T. Kasimatis, J. Hizanidis, A. Provata, P. Hövel, Chimera patterns in two-dimensional networks of coupled neurons. Phys. Rev. E 95, 032224 (2017).  https://doi.org/10.1103/PhysRevE.95.032224
  68. 68.
    M. Falcke, H. Engel, Influence of global coupling through the gas phase on the dynamics of CO oxidation on Pt(110). Phys. Rev. E 50, 1353 (1994).  https://doi.org/10.1103/PhysRevE.50.1353ADSCrossRefGoogle Scholar
  69. 69.
    Y. Maistrenko, O. Sudakov, O. Osiv, V. Maistrenko, Chimera states in three dimensions. New J. Phys. 17, 073037 (2015).  https://doi.org/10.1088/1367-2630/17/7/073037ADSCrossRefGoogle Scholar
  70. 70.
    H.W. Lau, J. Davidsen, Linked and knotted chimera filaments in oscillatory systems. Phys. Rev. E 94, 010204 (2016).  https://doi.org/10.1103/PhysRevE.94.010204
  71. 71.
    V. Maistrenko, O. Sudakov, O. Osiv, Y. Maistrenko, Multiple scroll wave chimera states. Eur. Phys. J. Spec. Top. 226, 1867 (2017).  https://doi.org/10.1140/epjst/e2017-70007-1ADSCrossRefGoogle Scholar
  72. 72.
    M. Shanahan, Metastable chimera states in community-structured oscillator networks. Chaos 20, 013108 (2010).  https://doi.org/10.1063/1.3305451MathSciNetCrossRefGoogle Scholar
  73. 73.
    Y. Zhu, Z. Zheng, J. Yang, Chimera states on complex networks. Phys. Rev. E 89, 022914 (2014).  https://doi.org/10.1103/PhysRevE.89.022914
  74. 74.
    P. Ashwin, O. Burylko, Weak chimeras in minimal networks of coupled phase oscillators. Chaos 25, 013106 (2015).  https://doi.org/10.1063/1.4905197MathSciNetzbMATHCrossRefGoogle Scholar
  75. 75.
    X. Jiang, D.M. Abrams, Symmetry-broken states on networks of coupled oscillators. Phys. Rev. E 93, 052202 (2016).  https://doi.org/10.1103/PhysRevE.93.052202
  76. 76.
    G. Ghoshal, A.P. Muñuzuri, J. Pérez-Mercader, Emergence of a super-synchronized mobbing state in a large population of coupled chemical oscillators. Sci. Rep. 6, 19186 (2016).  https://doi.org/10.1038/srep19186
  77. 77.
    J. Shena, J. Hizanidis, V. Kovanis, G.P. Tsironis, Turbulent chimeras in large semiconductor laser arrays. Sci. Rep. 7, 42116 (2017).  https://doi.org/10.1038/srep42116
  78. 78.
    A. Zakharova, M. Kapeller, E. Schöll, Chimera death: symmetry breaking in dynamical networks. Phys. Rev. Lett. 112, 154101 (2014).  https://doi.org/10.1103/PhysRevLett.112.154101
  79. 79.
    A. Vüllings, J. Hizanidis, I. Omelchenko, P. Hövel, Clustered chimera states in systems of type-I excitability. New J. Phys. 16, 123039 (2014).  https://doi.org/10.1088/1367-2630/16/12/123039ADSCrossRefGoogle Scholar
  80. 80.
    I. Omelchenko, Y. Maistrenko, P. Hövel, E. Schöll, Loss of coherence in dynamical networks: spatial chaos and chimera states. Phys. Rev. Lett. 106, 234102 (2011).  https://doi.org/10.1103/PhysRevLett.106.234102
  81. 81.
    C. Gu, G. St-Yves, J. Davidsen, Spiral wave chimeras in complex oscillatory and chaotic systems. Phys. Rev. Lett. 111, 134101 (2013).  https://doi.org/10.1103/PhysRevLett.111.134101
  82. 82.
    G.C. Sethia, A. Sen, F.M. Atay, Clustered chimera states in delay-coupled oscillator systems. Phys. Rev. Lett. 100, 144102 (2008).  https://doi.org/10.1103/PhysRevLett.100.144102
  83. 83.
    F. Böhm, A. Zakharova, E. Schöll, K. Lüdge, Amplitude-phase coupling drives chimera states in globally coupled laser networks. Phys. Rev. E 91, 040901 (2015).  https://doi.org/10.1103/PhysRevE.91.040901
  84. 84.
    A. Zakharova, S.A.M. Loos, J. Siebert, A. Gjurchinovski, J.C. Claussen, E. Schöll, Controlling chimera patterns in networks: interplay of structure, noise, and delay, in Control of Self-organizing Nonlinear Systems (Springer, Berlin, 2016), pp. 3–23.  https://doi.org/10.1007/978-3-319-28028-8_1Google Scholar
  85. 85.
    S.A.M. Loos, J.C. Claussen, E. Schöll, A. Zakharova, Chimera patterns under the impact of noise. Phys. Rev. E 93, 012209 (2016).  https://doi.org/10.1103/PhysRevE.93.012209
  86. 86.
    V. Semenov, A. Zakharova, Y. Maistrenko, E. Schöll, Delayed-feedback chimera states: forced multiclusters and stochastic resonance. Europhys. Lett. 115, 10005 (2016).  https://doi.org/10.1209/0295-5075/115/10005ADSCrossRefGoogle Scholar
  87. 87.
    N. Semenova, A. Zakharova, V. Anishchenko, E. Schöll, Coherence-resonance chimeras in a network of excitable elements. Phys. Rev. Lett. 117, 014102 (2016).  https://doi.org/10.1103/PhysRevLett.117.014102
  88. 88.
    A. Buscarino, M. Frasca, L.V. Gambuzza, P. Hövel, Chimera states in time-varying complex networks. Phys. Rev. E 91, 022817 (2015).  https://doi.org/10.1103/PhysRevE.91.022817
  89. 89.
    J. Sieber, O.E. Omel’chenko, M. Wolfrum, Controlling unstable chaos: stabilizing chimera states by feedback. Phys. Rev. Lett. 112, 054102 (2014).  https://doi.org/10.1103/PhysRevLett.112.054102
  90. 90.
    C. Bick, E.A. Martens, Controlling chimeras. New J. Phys. 17, 033030 (2015).  https://doi.org/10.1088/1367-2630/17/3/033030ADSMathSciNetCrossRefGoogle Scholar
  91. 91.
    I. Omelchenko, O.E. Omel’chenko, A. Zakharova, M. Wolfrum, E. Schöll, Tweezers for chimeras in small networks. Phys. Rev. Lett. 116, 114101 (2016).  https://doi.org/10.1103/PhysRevLett.116.114101
  92. 92.
    T. Isele, J. Hizanidis, A. Provata, P. Hövel, Controlling chimera states: the influence of excitable units. Phys. Rev. E 93, 022217 (2016).  https://doi.org/10.1103/PhysRevE.93.022217
  93. 93.
    F.P. Kemeth, S.W. Haugland, L. Schmidt, I.G. Kevrekidis, K. Krischer, A classification scheme for chimera states. Chaos 26, 094815 (2016).  https://doi.org/10.1063/1.4959804CrossRefGoogle Scholar
  94. 94.
    C.R. Laing, The dynamics of chimera states in heterogeneous Kuramoto networks. Phys. D 238, 1569 (2009).  https://doi.org/10.1016/j.physd.2009.04.012ADSMathSciNetzbMATHCrossRefGoogle Scholar
  95. 95.
    C. Laing, Chimeras in two-dimensional domains: heterogeneity and the continuum limit. SIAM J. Appl. Dyn. Syst. 16, 974 (2017).  https://doi.org/10.1137/16M1086662MathSciNetzbMATHCrossRefGoogle Scholar
  96. 96.
    E. Ott, T.M. Antonsen, Low dimensional behavior of large systems of globally coupled oscillators. Chaos 18, 037113 (2008).  https://doi.org/10.1063/1.2930766MathSciNetzbMATHCrossRefGoogle Scholar
  97. 97.
    D. Cohen, J. Neu, R. Rosales, Rotating spiral wave solutions of reaction-diffusion equations. SIAM J. Appl. Math. 35, 536 (1978).  https://doi.org/10.1137/0135045MathSciNetzbMATHCrossRefGoogle Scholar
  98. 98.
    E.A. Martens, C.R. Laing, S.H. Strogatz, Solvable model of spiral wave chimeras. Phys. Rev. Lett. 104, 044101 (2010).  https://doi.org/10.1103/PhysRevLett.104.044101
  99. 99.
    J.F. Totz, R. Snari, D. Yengi, M.R. Tinsley, H. Engel, K. Showalter, Phase-lag synchronization in networks of coupled chemical oscillators. Phys. Rev. E 92, 022819 (2015).  https://doi.org/10.1103/PhysRevE.92.022819
  100. 100.
    N. Tompkins, N. Li, C. Girabawe, M. Heymann, G.B. Ermentrout, I.R. Epstein, S. Fraden, Testing Turing’s theory of morphogenesis in chemical cells. Proc. Natl. Acad. Sci. USA 111, 4397 (2014).  https://doi.org/10.1073/pnas.1322005111ADSCrossRefGoogle Scholar
  101. 101.
    I.Z. Kiss, Y. Zhai, J.L. Hudson, Emerging coherence in a population of chemical oscillators. Science 296, 1676 (2002).  https://doi.org/10.1126/science.1070757ADSCrossRefGoogle Scholar
  102. 102.
    D.K. Verma, H. Singh, P. Parmananda, A.Q. Contractor, M. Rivera, Kuramoto transition in an ensemble of mercury beating heart systems. Chaos 25, 064609 (2015).  https://doi.org/10.1063/1.4921717MathSciNetCrossRefGoogle Scholar
  103. 103.
    P.R. Buskohl, R.C. Kramb, R.A. Vaia, Synchronicity in composite hydrogels: Belousov–Zhabotinsky (BZ) active nodes in gelatin. J. Phys. Chem. B 119, 3595 (2015).  https://doi.org/10.1021/jp512829hCrossRefGoogle Scholar
  104. 104.
    D.P. Rosin, D. Rontani, N.D. Haynes, E. Schöll, D.J. Gauthier, Transient scaling and resurgence of chimera states in networks of Boolean phase oscillators. Phys. Rev. E 90, 030902 (2014).  https://doi.org/10.1103/PhysRevE.90.030902
  105. 105.
    H. Brandtstädter, M. Braune, I. Schebesch, H. Engel, Experimental study of the dynamics of spiral pairs in light-sensitive Belousov–Zhabotinskii media using an open-gel reactor. Chem. Phys. Lett. 323, 145 (2000).  https://doi.org/10.1016/S0009-2614(00)00486-3ADSCrossRefGoogle Scholar
  106. 106.
    M.R. Tinsley, A.F. Taylor, Z. Huang, K. Showalter, Emergence of collective behavior in groups of excitable catalyst-loaded particles: spatiotemporal dynamical quorum sensing. Phys. Rev. Lett. 102, 158301 (2009).  https://doi.org/10.1103/PhysRevLett.102.158301
  107. 107.
    B. Neumann, Z. Nagy-Ungvarai, S. Müller, Interaction between silica gel matrices and the Belousov-Zhabotinsky reaction. Chem. Phys. Lett. 211, 36 (1993).  https://doi.org/10.1016/0009-2614(93)80048-TADSCrossRefGoogle Scholar
  108. 108.
    S.C. Müller, T. Plesser, B. Hess, Two-dimensional spectrophotometry and pseudo-color representation of chemical reaction patterns. Sci. Nat. 73, 165 (1986).  https://doi.org/10.1007/BF00417720
  109. 109.
    A.-L. Barabási, E. Bonabeau, Scale-free networks. Sci. Am. 288, 60 (2003).  https://doi.org/10.1038/scientificamerican0503-60CrossRefGoogle Scholar
  110. 110.
    D.J. Watts, S.H. Strogatz, Collective dynamics of ‘small-world’ networks. Nature 393, 440 (1998).  https://doi.org/10.1038/30918ADSzbMATHCrossRefGoogle Scholar
  111. 111.
    L.M. Pecora, F. Sorrentino, A.M. Hagerstrom, T.E. Murphy, R. Roy, Cluster synchronization and isolated desynchronization in complex networks with symmetries. Nat. Commun. 5, 4079 (2014).  https://doi.org/10.1038/ncomms5079
  112. 112.
    D. Witthaut, M. Timme, Braess’s paradox in oscillator networks, desynchronization and power outage. New J. Phys. 14, 083036 (2012).  https://doi.org/10.1088/1367-2630/14/8/083036ADSCrossRefGoogle Scholar
  113. 113.
    L.R. Varshney, B.L. Chen, E. Paniagua, D.H. Hall, D.B. Chklovskii, Structural properties of the Caenorhabditis elegans neuronal network. PLOS Comput. Biol. 7, e1001066 (2011).  https://doi.org/10.1371/journal.pcbi.1001066ADSCrossRefGoogle Scholar
  114. 114.
    T.A. Jarrell, Y. Wang, A.E. Bloniarz, C.A. Brittin, M. Xu, J.N. Thomson, D.G. Albertson, D.H. Hall, S.W. Emmons, The connectome of a decision-making neural network. Science 337, 437 (2012).  https://doi.org/10.1126/science.1221762ADSCrossRefGoogle Scholar
  115. 115.
    P. Hänggi, P. Jung, Colored noise in dynamical systems, in Advances in Chemical Physics, vol. 89, ed. by I. Prigogine, S.A. Rice (Wiley, New York, 1994), pp. 239–326.  https://doi.org/10.1002/9780470141489.ch4CrossRefGoogle Scholar
  116. 116.
    N.G.V. Kampen, Stochastic Processes in Physics and Chemistry (Elsevier, Amsterdam, 2011), http://www.sciencedirect.com/science/book/9780444529657
  117. 117.
    K. Yoshikawa, R. Aihara, K. Agladze, Size-dependent Belousov-Zhabotinsky oscillation in small beads. J. Phys. Chem. A 102, 7649 (1998).  https://doi.org/10.1021/jp982136dADSCrossRefGoogle Scholar
  118. 118.
    A.M. Zhabotinsky, F. Buchholtz, A.B. Kiyatkin, I.R. Epstein, Oscillations and waves in metal-ion-catalyzed bromate oscillating reactions in highly oxidized states. J. Phys. Chem. 97, 7578 (1993).  https://doi.org/10.1021/j100131a030CrossRefGoogle Scholar
  119. 119.
    R. Toth, A.F. Taylor, M.R. Tinsley, Collective behavior of a population of chemically coupled oscillators. J. Phys. Chem. B 110, 10170 (2006).  https://doi.org/10.1021/jp060732zCrossRefGoogle Scholar
  120. 120.
    S. Kádár, T. Amemiya, K. Showalter, Reaction mechanism for light sensitivity of the Ru(bpy)32+-catalyzed Belousov-Zhabotinsky reaction. J. Phys. Chem. A 101, 8200 (1997).  https://doi.org/10.1021/jp971937yADSCrossRefGoogle Scholar
  121. 121.
    W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, Cambridge, 2007), http://www.cambridge.org/de/academic/subjects/mathematics/numerical-recipes/numerical-recipes-art-scientific-computing-3rd-edition?format=HB&utm_source=shortlink&utm_medium=shortlink&utm_campaign=numericalrecipes
  122. 122.
    I. Omelchenko, A. Zakharova, P. Hövel, J. Siebert, E. Schöll, Nonlinearity of local dynamics promotes multi-chimeras. Chaos 25, 083104 (2015).  https://doi.org/10.1063/1.4927829MathSciNetzbMATHCrossRefGoogle Scholar
  123. 123.
    I. Omelchenko, A. Provata, J. Hizanidis, E. Schöll, P. Hövel, Robustness of chimera states for coupled FitzHugh-Nagumo oscillators. Phys. Rev. E 91, 022917 (2015).  https://doi.org/10.1103/PhysRevE.91.022917
  124. 124.
    A.S. Mikhailov, Foundations of Synergetics I: Distributed Active Systems (Springer, Berlin, 1990).  https://doi.org/10.1007/978-3-642-78556-6CrossRefzbMATHGoogle Scholar
  125. 125.
    M.-A. Bray, J.P. Wikswo, Use of topological charge to determine filament location and dynamics in a numerical model of scroll wave activity. IEEE Trans. Biomed. Eng. 49, 1086 (2002).  https://doi.org/10.1109/TBME.2002.803516CrossRefGoogle Scholar
  126. 126.
    M.J. Panaggio, D.M. Abrams, Chimera states on the surface of a sphere. Phys. Rev. E 91, 022909 (2015).  https://doi.org/10.1103/PhysRevE.91.022909
  127. 127.
    H. Daido, Order function and macroscopic mutual entrainment in uniformly coupled limit-cycle oscillators. Prog. Theor. Phys. 88, 1213 (1992).  https://doi.org/10.1143/ptp/88.6.1213ADSMathSciNetCrossRefGoogle Scholar
  128. 128.
    J.F. Totz, J. Rode, M.R. Tinsley, K. Showalter, H. Engel, Spiral wave chimera states in large populations of coupled chemical oscillators. Nat. Phys. 14, 282 (2018).  https://doi.org/10.1038/s41567-017-0005-8ADSCrossRefGoogle Scholar
  129. 129.
    A.T. Winfree, Varieties of spiral wave behavior: an experimentalist’s approach to the theory of excitable media. Chaos 1, 303 (1991).  https://doi.org/10.1063/1.165844MathSciNetzbMATHCrossRefGoogle Scholar
  130. 130.
    D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Academic, New York, 2001), http://www.sciencedirect.com/science/book/9780122673511
  131. 131.
    D. Barkley, M. Kness, L.S. Tuckerman, Spiral-wave dynamics in a simple model of excitable media: the transition from simple to compound rotation. Phys. Rev. A 42, 2489 (1990).  https://doi.org/10.1103/PhysRevA.42.2489ADSMathSciNetCrossRefGoogle Scholar
  132. 132.
    W. Jahnke, W.E. Skaggs, A.T. Winfree, Chemical vortex dynamics in the Belousov-Zhabotinskii reaction and in the two-variable Oregonator model. J. Phys. Chem.93, 740 (1989).  https://doi.org/10.1021/j100339a047CrossRefGoogle Scholar
  133. 133.
    D. Barkley, Euclidean symmetry and the dynamics of rotating spiral waves. Phys. Rev. Lett. 72, 164 (1994).  https://doi.org/10.1103/PhysRevLett.72.164ADSCrossRefGoogle Scholar
  134. 134.
    M. Wolfrum, O.E. Omel’chenko, Chimera states are chaotic transients. Phys. Rev. E 84, 015201 (2011).  https://doi.org/10.1103/PhysRevE.84.015201
  135. 135.
    Y.L. Maistrenko, A. Vasylenko, O. Sudakov, R. Levchenko, V.L. Maistrenko, Cascades of multiheaded chimera states for coupled phase oscillators. Int. J. Bifurc. Chaos 24, 1440014 (2014).  https://doi.org/10.1142/S0218127414400148ADSMathSciNetzbMATHCrossRefGoogle Scholar
  136. 136.
    I. Sendiña-Nadal, S. Alonso, V. Pérez-Muñuzuri, M. Gómez-Gesteira, V. Pérez-Villar, L. Ramírez-Piscina, J. Casademunt, J.M. Sancho, F. Sagués, Brownian motion of spiral waves driven by spatiotemporal structured noise. Phys. Rev. Lett. 84, 2734 (2000).  https://doi.org/10.1103/PhysRevLett.84.2734ADSCrossRefGoogle Scholar
  137. 137.
    I.V. Biktasheva, V.N. Biktashev, Wave-particle dualism of spiral waves dynamics. Phys. Rev. E 67, 026221 (2003).  https://doi.org/10.1103/PhysRevE.67.026221
  138. 138.
    C. Brito, I.S. Aranson, H. Chaté, Vortex glass and vortex liquid in oscillatory media. Phys. Rev. Lett. 90, 068301 (2003).  https://doi.org/10.1103/PhysRevLett.90.068301
  139. 139.
    M. Bär, M. Eiswirth, Turbulence due to spiral breakup in a continuous excitable medium. Phys. Rev. E 48, R1635 (1993).  https://doi.org/10.1103/PhysRevE.48.R1635ADSCrossRefGoogle Scholar
  140. 140.
    M. Bär, L. Brusch, Breakup of spiral waves caused by radial dynamics: Eckhaus and finite wavenumber instabilities. New J. Phys. 6, 5 (2004).  https://doi.org/10.1088/1367-2630/6/1/005ADSCrossRefGoogle Scholar
  141. 141.
    R. Kapral, R. Livi, G.-L. Oppo, A. Politi, Dynamics of complex interfaces. Phys. Rev. E 49, 2009 (1994).  https://doi.org/10.1103/PhysRevE.49.2009ADSMathSciNetCrossRefGoogle Scholar
  142. 142.
    Z. Nagy-Ungvarai, S. Müller, Characterization of wave front instabilities in the Belousov-Zhabotinsky reaction: an overview. Int. J. Bifurc. Chaos 04, 1257 (1994).  https://doi.org/10.1142/S0218127494000940ADSzbMATHCrossRefGoogle Scholar
  143. 143.
    L. Glass, M.C. Mackey, From Clocks to Chaos: The Rhythms of Life (Princeton University Press, Princeton, 1988), https://press.princeton.edu/titles/4308.html
  144. 144.
    E.M. Izhikevich, Dynamical Systems in Neuroscience (MIT Press, Cambridge, 2007), https://mitpress.mit.edu/books/dynamical-systems-neuroscience
  145. 145.
    N.W. Schultheiss, A.A. Prinz, R.J. Butera, Phase Response Curves in Neuroscience: Theory, Experiment, and Analysis, vol. 6 (Springer, Berlin, 2011).  https://doi.org/10.1007/978-1-4614-0739-3CrossRefGoogle Scholar
  146. 146.
    L. Glass, A.T. Winfree, Discontinuities in phase-resetting experiments. Am. J. Physiol. Regul. Integr. Comp. Physiol. 246, R251 (1984), http://ajpregu.physiology.org/content/246/2/R251CrossRefGoogle Scholar
  147. 147.
    J. Jalife, G.K. Moe, Effect of electrotonic potentials on pacemaker activity of canine Purkinje fibers in relation to parasystole. Circ. Res. 39, 801 (1976).  https://doi.org/10.1161/01.RES.39.6.801CrossRefGoogle Scholar
  148. 148.
    M.R. Guevara, A. Shrier, L. Glass, Phase resetting of spontaneously beating embryonic ventricular heart cell aggregates. Am. J. Physiol. Heart Circ. Physiol. 251, H1298 (1986).  https://doi.org/10.1152/ajpheart.1986.251.6.H1298CrossRefGoogle Scholar
  149. 149.
    J.M. Anumonwo, M. Delmar, A. Vinet, D.C. Michaels, J. Jalife, Phase resetting and entrainment of pacemaker activity in single sinus nodal cells. Circ. Res. 68, 1138 (1991).  https://doi.org/10.1161/01.RES.68.4.1138CrossRefGoogle Scholar
  150. 150.
    D.F. Russell, Respiratory pattern generation in adult lampreys (Lampetra fluviatilis): interneurons and burst resetting. J. Comp. Physiol. 158, 91 (1986).  https://doi.org/10.1007/BF00614523CrossRefGoogle Scholar
  151. 151.
    R. Wessel, In vitro study of phase resetting and phase locking in a time-comparison circuit in the electric fish, Eigenmannia. Biophys. J. 69, 1880 (1995).  https://doi.org/10.1016/S0006-3495(95)80058-5ADSCrossRefGoogle Scholar
  152. 152.
    A.A. Prinz, V. Thirumalai, E. Marder, The functional consequences of changes in the strength and duration of synaptic inputs to oscillatory neurons. J. Neurosci. 23, 943 (2003), http://www.jneurosci.org/content/23/3/943CrossRefGoogle Scholar
  153. 153.
    S.B.S. Khalsa, M.E. Jewett, C. Cajochen, C.A. Czeisler, A phase response curve to single bright light pulses in human subjects. J. Physiol. 549, 945 (2003).  https://doi.org/10.1113/jphysiol.2003.040477CrossRefGoogle Scholar
  154. 154.
    C.H. Johnson, J.W. Hastings, Circadian phototransduction: phase resetting and frequency of the circadian clock of Gonyaulax cells in red light. J. Biol. Rhythm. 4, 417 (1989).  https://doi.org/10.1177/074873048900400403CrossRefGoogle Scholar
  155. 155.
    V. Varma, N. Mukherjee, N.N. Kannan, V.K. Sharma, Strong (type 0) phase resetting of activity-rest rhythm in fruit flies, Drosophila melanogaster, at low temperature. J. Biol. Rhythm. 28, 380 (2013).  https://doi.org/10.1177/0748730413508922CrossRefGoogle Scholar
  156. 156.
    J. Rode, Synchronization in heterogeneous networks - from phase to relaxation oscillators. M.Sc. thesis, TU Berlin (2016)Google Scholar
  157. 157.
    V. Zykov, H. Engel, Feedback-mediated control of spiral waves. Phys. D 199, 243 (2004).  https://doi.org/10.1016/j.physd.2004.10.001ADSMathSciNetzbMATHCrossRefGoogle Scholar
  158. 158.
    V. Zykov, G. Bordiougov, H. Brandtstädter, I. Gerdes, H. Engel, Global control of spiral wave dynamics in an excitable domain of circular and elliptical shape. Phys. Rev. Lett. 92, 018304 (2004).  https://doi.org/10.1103/PhysRevLett.92.018304
  159. 159.
    J. Schlesner, V.S. Zykov, H. Brandtstädter, I. Gerdes, H. Engel, Efficient control of spiral wave location in an excitable medium with localized heterogeneities. New J. Phys. 10, 015003 (2008).  https://doi.org/10.1088/1367-2630/10/1/015003ADSCrossRefGoogle Scholar
  160. 160.
    J.F. Totz, Wechselwirkung spiralförmiger Erregungswellen mit kreisförmigen Heterogenitäten. B.Sc. thesis, TU Berlin, Berlin (2011)Google Scholar
  161. 161.
    E. Nakouzi, J.F. Totz, Z. Zhang, O. Steinbock, H. Engel, Hysteresis and drift of spiral waves near heterogeneities: from chemical experiments to cardiac simulations. Phys. Rev. E 93, 022203 (2016).  https://doi.org/10.1103/PhysRevE.93.022203
  162. 162.
    S. Alonso, M. Bär, Reentry near the percolation threshold in a heterogeneous discrete model for cardiac tissue. Phys. Rev. Lett. 110, 158101 (2013).  https://doi.org/10.1103/PhysRevLett.110.158101
  163. 163.
    A. Rothkegel, K. Lehnertz, Irregular macroscopic dynamics due to chimera states in small-world networks of pulse-coupled oscillators. New J. Phys. 16, 055006 (2014).  https://doi.org/10.1088/1367-2630/16/5/055006ADSCrossRefGoogle Scholar
  164. 164.
    S.-Y. Takemura et al., A visual motion detection circuit suggested by Drosophila connectomics. Nature 500, 175 (2013).  https://doi.org/10.1038/nature12450ADSCrossRefGoogle Scholar
  165. 165.
    Y. Chen, S. Wang, C.C. Hilgetag, C. Zhou, Features of spatial and functional segregation and integration of the primate connectome revealed by trade-off between wiring cost and efficiency. PLOS Comput. Biol. 13, e1005776 (2017).  https://doi.org/10.1371/journal.pcbi.1005776ADSCrossRefGoogle Scholar
  166. 166.
    T.V.P. Bliss, T. Lømo, Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 232, 331 (1973).  https://doi.org/10.1113/jphysiol.1973.sp010273CrossRefGoogle Scholar
  167. 167.
    S. Boccaletti, J.A. Almendral, S. Guan, I. Leyva, Z. Liu, I. Sendiña-Nadal, Z. Wang, Y. Zou, Explosive transitions in complex networks’ structure and dynamics: percolation and synchronization. Phys. Rep. 660, 1 (2016).  https://doi.org/10.1016/j.physrep.2016.10.004ADSMathSciNetzbMATHCrossRefGoogle Scholar
  168. 168.
    B. Pietras, N. Deschle, A. Daffertshofer, Equivalence of coupled networks and networks with multimodal frequency distributions: conditions for the bimodal and trimodal case. Phys. Rev. E 94, 052211 (2016).  https://doi.org/10.1103/PhysRevE.94.052211
  169. 169.
    S.M. Bohte, J.N. Kok, H. La Poutré, Error-backpropagation in temporally encoded networks of spiking neurons. Neurocomputing 48, 17 (2002).  https://doi.org/10.1016/S0925-2312(01)00658-0zbMATHCrossRefGoogle Scholar
  170. 170.
    R. Bates, O. Blyuss, A. Zaikin, Stochastic resonance in an intracellular genetic perceptron. Phys. Rev. E 89, 032716 (2014).  https://doi.org/10.1103/PhysRevE.89.032716
  171. 171.
    L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Stochastic resonance. Rev. Mod. Phys. 70, 223 (1998).  https://doi.org/10.1103/RevModPhys.70.223ADSCrossRefGoogle Scholar
  172. 172.
    H. Gang, T. Ditzinger, C.Z. Ning, H. Haken, Stochastic resonance without external periodic force. Phys. Rev. Lett. 71, 807 (1993).  https://doi.org/10.1103/PhysRevLett.71.807ADSCrossRefGoogle Scholar
  173. 173.
    A.S. Pikovsky, J. Kurths, Coherence resonance in a noise-driven excitable system. Phys. Rev. Lett. 78, 775 (1997).  https://doi.org/10.1103/PhysRevLett.78.775ADSMathSciNetzbMATHCrossRefGoogle Scholar
  174. 174.
    K. Wimmer, D.Q. Nykamp, C. Constantinidis, A. Compte, Bump attractor dynamics in prefrontal cortex explains behavioral precision in spatial working memory. Nat. Neurosci. 17, 431 (2014).  https://doi.org/10.1038/nn.3645CrossRefGoogle Scholar
  175. 175.
    A.J. Ijspeert, Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21, 642 (2008).  https://doi.org/10.1016/j.neunet.2008.03.014CrossRefGoogle Scholar
  176. 176.
    A.H. Cohen, P. Wallén, The neuronal correlate of locomotion in fish. Exp. Brain Res. 41, 11 (1980).  https://doi.org/10.1007/BF00236674
  177. 177.
    I. Delvolvé, P. Branchereau, R. Dubuc, J.-M. Cabelguen, Fictive rhythmic motor patterns induced by NMDA in an in vitro brain stem–spinal cord preparation from an adult urodele. J. Neurophysiol. 82, 1074 (1999), http://jn.physiology.org/content/82/2/1074CrossRefGoogle Scholar
  178. 178.
    S. Steingrube, M. Timme, F. Wörgötter, P. Manoonpong, Self-organized adaptation of a simple neural circuit enables complex robot behaviour. Nat. Phys. 6, 224 (2010).  https://doi.org/10.1038/nphys1508ADSCrossRefGoogle Scholar
  179. 179.
    N.E. Kouvaris, T. Isele, A.S. Mikhailov, E. Schöll, Propagation failure of excitation waves on trees and random networks. Europhys. Lett. 106, 68001 (2014).  https://doi.org/10.1209/0295-5075/106/68001ADSCrossRefGoogle Scholar
  180. 180.
    M. Salathé, M. Kazandjieva, J.W. Lee, P. Levis, M.W. Feldman, J.H. Jones, A high-resolution human contact network for infectious disease transmission. Proc. Natl. Acad. Sci. USA 107, 22020 (2010).  https://doi.org/10.1073/pnas.1009094108ADSCrossRefGoogle Scholar
  181. 181.
    D. Brockmann, D. Helbing, The hidden geometry of complex, network-driven contagion phenomena. Science 342, 1337 (2013).  https://doi.org/10.1126/science.1245200ADSCrossRefGoogle Scholar
  182. 182.
    T.W. Valente, Network Models of the Diffusion of Innovations (Hampton Press, Cresskill, 1995)Google Scholar
  183. 183.
    E.R. Kandel, J.H. Schwartz, T.M. Jessell, S.A. Siegelbaum, A.J. Hudspeth (eds.), Principles of Neural Science (McGraw-Hill, New York, 2012), http://www.principlesofneuralscience.com/
  184. 184.
    A.E. Pereda, Electrical synapses and their functional interactions with chemical synapses. Nat. Rev. Neurosci. 15, 250 (2014).  https://doi.org/10.1038/nrn3708CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikTechnische Universität BerlinBerlinGermany

Personalised recommendations