Advertisement

Target Wave Synchronization on a Network

  • Jan Frederik TotzEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Human brain activity is an enigma. There is no chance in the near future to unravel the network of billions of neurons and trillions of connections between them [1]. To make matters worse, this is only a static snapshot of a single instant in time. Discovered more than a century ago by one of the pioneers of neurobiology, Santiago Ramnóy Cajal, the brain connectome is not static, but dynamic [2, 3]. This plasticity allows for learning [4, 5, 6], memorization [7, 8] and encompasses regeneration [9, 10].

References

  1. 1.
    E.R. Kandel, J.H. Schwartz, T.M. Jessell, S.A. Siegelbaum, A.J. Hudspeth (eds.), Principles of Neural Science (McGraw-Hill, USA, 2012). http://www.principlesofneuralscience.com/
  2. 2.
    S.R. y Cajal, Nobel Lecture: The Structure and Connections of Neurons (1906). http://www.nobelprize.org/nobel_prizes/medicine/laureates/1906/cajal-lecture.html
  3. 3.
    F. de Castro, L. López-Mascaraque, J.A. De Carlos, Cajal: lessons on brain development. Brain Res. Rev. 55, 481 (2007).  https://doi.org/10.1016/j.brainresrev.2007.01.011CrossRefGoogle Scholar
  4. 4.
    D.O. Hebb, The Organization of Behavior: A Neuropsychological Theory (Wiley, New York, 1949)Google Scholar
  5. 5.
    T.V.P. Bliss, T. Lømo, Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 232, 331 (1973).  https://doi.org/10.1113/jphysiol.1973.sp010273CrossRefGoogle Scholar
  6. 6.
    L. Carrillo-Reid, W. Yang, Y. Bando, D.S. Peterka, R. Yuste, Imprinting and recalling cortical ensembles. Science 353, 691 (2016).  https://doi.org/10.1126/science.aaf7560ADSCrossRefGoogle Scholar
  7. 7.
    J.-H. Han, S.A. Kushner, A.P. Yiu, C.J. Cole, A. Matynia, R.A. Brown, R.L. Neve, J.F. Guzowski, A.J. Silva, S.A. Josselyn, Neuronal competition and selection during memory formation. Science 316, 457 (2007).  https://doi.org/10.1126/science.1139438ADSCrossRefGoogle Scholar
  8. 8.
    A.J. Silva, Y. Zhou, T. Rogerson, J. Shobe, J. Balaji, Molecular and cellular approaches to memory allocation in neural circuits. Science 326, 391 (2009).  https://doi.org/10.1126/science.1174519CrossRefGoogle Scholar
  9. 9.
    L.J. Richards, T.J. Kilpatrick, P.F. Bartlett, De novo generation of neuronal cells from the adult mouse brain. Proc. Natl. Acad. Sci. USA 89, 8591 (1992).  https://doi.org/10.1073/pnas.89.18.8591ADSCrossRefGoogle Scholar
  10. 10.
    D.J. Jhaveri, A. Tedoldi, S. Hunt, R. Sullivan, N.R. Watts, J.M. Power, P.F. Bartlett, P. Sah, Evidence for newly generated interneurons in the basolateral amygdala of adult mice. Mol. Psychiatry (2017).  https://doi.org/10.1038/mp.2017.134CrossRefGoogle Scholar
  11. 11.
    J. Fell, N. Axmacher, The role of phase synchronization in memory processes. Nat. Rev. Neurosci. 12, 105 (2011).  https://doi.org/10.1038/nrn2979CrossRefGoogle Scholar
  12. 12.
    P.R. Roelfsema, A.K. Engel, P. König, W. Singer, Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature 385, 157 (1997).  https://doi.org/10.1038/385157a0ADSCrossRefGoogle Scholar
  13. 13.
    E. Rodriguez, N. George, J.-P. Lachaux, J. Martinerie, B. Renault, F.J. Varela, Perception’s shadow: long-distance synchronization of human brain activity. Nature 397, 430 (1999).  https://doi.org/10.1038/17120ADSCrossRefGoogle Scholar
  14. 14.
    C. Hammond, H. Bergman, P. Brown, Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends Neurosci. 30, 357 (2007).  https://doi.org/10.1016/j.tins.2007.05.004CrossRefGoogle Scholar
  15. 15.
    J.J. Eggermont, L.E. Roberts, The neuroscience of tinnitus. Trends Neurosci. 27, 676 (2004).  https://doi.org/10.1016/j.tins.2004.08.010CrossRefGoogle Scholar
  16. 16.
    P.A. Tass, I. Adamchic, H.-J. Freund, T. von Stackelberg, C. Hauptmann, Counteracting tinnitus by acoustic coordinated reset neuromodulation. Restor. Neurol. Neurosci. 30, 137 (2012).  https://doi.org/10.3233/RNN-2012-110218CrossRefGoogle Scholar
  17. 17.
    F. Mormann, K. Lehnertz, P. David, C.E. Elger, Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Physica D 144, 358 (2000).  https://doi.org/10.1016/S0167-2789(00)00087-7ADSCrossRefzbMATHGoogle Scholar
  18. 18.
    P. Jiruska, M. de Curtis, J.G.R. Jefferys, C.A. Schevon, S.J. Schiff, K. Schindler, Synchronization and desynchronization in epilepsy: Controversies and hypotheses. J. Physiol. 591, 787 (2013).  https://doi.org/10.1113/jphysiol.2012.239590CrossRefGoogle Scholar
  19. 19.
    N. Wiener, Nonlinear Problems in Random Theory (MIT, USA, 1958)Google Scholar
  20. 20.
    A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University, Cambridge, 2001). http://www.cambridge.org/de/academic/subjects/physics/nonlinear-science-and-fluid-dynamics/synchronization-universal-concept-nonlinear-sciences?format=PB&isbn=9780521533522
  21. 21.
    G. Buzsáki, A. Draguhn, Neuronal oscillations in cortical networks. Science 304, 1926 (2004).  https://doi.org/10.1126/science.1099745ADSCrossRefGoogle Scholar
  22. 22.
    I. Fischer, R. Vicente, J.M. Buldú, M. Peil, C.R. Mirasso, M.C. Torrent, J. García-Ojalvo, Zero-lag long-range synchronization via dynamical relaying. Phys. Rev. Lett. 97, 123902 (2006).  https://doi.org/10.1103/PhysRevLett.97.123902
  23. 23.
    V. Flunkert, S. Yanchuk, T. Dahms, E. Schöll, Synchronizing distant nodes: a universal classification of networks. Phys. Rev. Lett. 105, 254101 (2010).  https://doi.org/10.1103/PhysRevLett.105.254101
  24. 24.
    W. Klimesch, R. Freunberger, P. Sauseng, W. Gruber, A short review of slow phase synchronization and memory: evidence for control processes in different memory systems? Brain Res. 1235, 31 (2008).  https://doi.org/10.1016/j.brainres.2008.06.049CrossRefGoogle Scholar
  25. 25.
    V. Nicosia, M. Valencia, M. Chavez, A. Díaz-Guilera, V. Latora, Remote synchronization reveals network symmetries and functional modules. Phys. Rev. Lett. 110, 174102 (2013).  https://doi.org/10.1103/PhysRevLett.110.174102
  26. 26.
    H. Nakao, A.S. Mikhailov, Turing patterns in network-organized activator-inhibitor systems. Nat. Phys. 6, 544 (2010).  https://doi.org/10.1038/nphys1651CrossRefGoogle Scholar
  27. 27.
    S. Hata, H. Nakao, A.S. Mikhailov, Dispersal-induced destabilization of metapopulations and oscillatory turing patterns in ecological networks. Sci. Rep. 4 (2014).  https://doi.org/10.1038/srep03585
  28. 28.
    H. Nakao, A.S. Mikhailov, Diffusion-induced instability and chaos in random oscillator networks. Phys. Rev. E 79, 036214 (2009).  https://doi.org/10.1103/PhysRevE.79.036214ADSCrossRefGoogle Scholar
  29. 29.
    N.E. Kouvaris, T. Isele, A.S. Mikhailov, E. Schöll, Propagation failure of excitation waves on trees and random networks. Europhys. Lett. 106, 68001 (2014).  https://doi.org/10.1209/0295-5075/106/68001ADSCrossRefGoogle Scholar
  30. 30.
    T. Isele, B. Hartung, P. Hövel, E. Schöll, Excitation waves on a minimal small-world model. Eur. Phys. J. B 88, 1 (2015).  https://doi.org/10.1140/epjb/e2015-50869-yMathSciNetCrossRefGoogle Scholar
  31. 31.
    A.S. Mikhailov, Foundations of Synergetics I: Distributed Active Systems (Springer, Berlin, 1990).  https://doi.org/10.1007/978-3-642-78556-6CrossRefzbMATHGoogle Scholar
  32. 32.
    S.H. Strogatz, Exploring complex networks. Nature 410, 268 (2001).  https://doi.org/10.1038/35065725ADSCrossRefzbMATHGoogle Scholar
  33. 33.
    D. Garlaschelli, F. Ruzzenenti, R. Basosi, Complex networks and symmetry i: a review. Symmetry 2, 1683 (2010).  https://doi.org/10.3390/sym2031683MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    L.M. Pecora, F. Sorrentino, A.M. Hagerstrom, T.E. Murphy, R. Roy, Cluster synchronization and isolated desynchronization in complex networks with symmetries. Nat. Commun. 5, 4079 (2014).  https://doi.org/10.1038/ncomms5079ADSCrossRefGoogle Scholar
  35. 35.
    L.M. Pecora, T.L. Carroll, Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80, 2109 (1998).  https://doi.org/10.1103/PhysRevLett.80.2109ADSCrossRefGoogle Scholar
  36. 36.
    L. Pecora, T. Carroll, G. Johnson, D. Mar, K.S. Fink, Synchronization stability in coupled oscillator arrays: solution for arbitrary configurations. Int. J. Bifurc. Chaos 10, 273 (2000).  https://doi.org/10.1142/S0218127400000189MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    W. Zou, D.V. Senthilkumar, R. Nagao, I.Z. Kiss, Y. Tang, A. Koseska, J. Duan, J. Kurths, Restoration of rhythmicity in diffusively coupled dynamical networks. Nat. Commun. 6, 7709 (2015).  https://doi.org/10.1038/ncomms8709ADSCrossRefGoogle Scholar
  38. 38.
    P.G. Kevrekidis, I.G. Kevrekidis, Wave of translation, Encyclopedia of Nonlinear Science (Taylor and Francis Group, 2006), pp. 986–988. https://www.crcpress.com/Encyclopedia-of-Nonlinear-Science/Scott/p/book/9781138012141
  39. 39.
    F. Sorrentino, L. Pecora, Approximate cluster synchronization in networks with symmetries and parameter mismatches. Chaos 26, 094823 (2016).  https://doi.org/10.1063/1.4961967ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    E.W. Dijkstra, A note on two problems in connexion with graphs. Numer. Math. 1, 269 (1959).  https://doi.org/10.1007/BF01386390MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    A.J. Ijspeert, Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21, 642 (2008).  https://doi.org/10.1016/j.neunet.2008.03.014CrossRefGoogle Scholar
  42. 42.
    X. Wu, S. Ma, CPG-based control of serpentine locomotion of a snake-like robot. Mechatronics 20, 326 (2010).  https://doi.org/10.1016/j.mechatronics.2010.01.006CrossRefGoogle Scholar
  43. 43.
    S. Steingrube, M. Timme, F. Wörgötter, P. Manoonpong, Self-organized adaptation of a simple neural circuit enables complex robot behaviour. Nat. Phys. 6, 224 (2010).  https://doi.org/10.1038/nphys1508CrossRefGoogle Scholar
  44. 44.
    A.F. Taylor, M.R. Tinsley, K. Showalter, Insights into collective cell behaviour from populations of coupled chemical oscillators. Phys. Chem. Chem. Phys. 31, 20047 (2015).  https://doi.org/10.1039/C5CP01964HCrossRefGoogle Scholar
  45. 45.
    Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Springer, Berlin, 1984).  https://doi.org/10.1007/978-3-642-69689-3CrossRefzbMATHGoogle Scholar
  46. 46.
    R. Olfati-Saber, J.A. Fax, R.M. Murray, Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95, 215 (2007).  https://doi.org/10.1109/JPROC.2006.887293CrossRefzbMATHGoogle Scholar
  47. 47.
    A.-L. Barabási, R. Albert, Emergence of scaling in random networks. Science 286, 509 (1999).  https://doi.org/10.1126/science.286.5439.509ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    A.-L. Barabási, E. Bonabeau, Scale-free networks. Sci. Am. 288, 60 (2003).  https://doi.org/10.1038/scientificamerican0503-60CrossRefGoogle Scholar
  49. 49.
    J.F. Totz, R. Snari, D. Yengi, M.R. Tinsley, H. Engel, K. Showalter, Phase-lag synchronization in networks of coupled chemical oscillators. Phys. Rev. E 92, 022819 (2015).  https://doi.org/10.1103/PhysRevE.92.022819ADSCrossRefGoogle Scholar
  50. 50.
    M. Newman, Networks: An Introduction (Oxford University, Oxford, 2010). https://global.oup.com/academic/product/networks-9780199206650?cc=de&lang=en&
  51. 51.
    B.D. MacArthur, R.J. Sánchez-García, Spectral characteristics of network redundancy. Phys. Rev. E 80, 026117 (2009).  https://doi.org/10.1103/PhysRevE.80.026117ADSCrossRefGoogle Scholar
  52. 52.
    D. Rubino, K.A. Robbins, N.G. Hatsopoulos, Propagating waves mediate information transfer in the motor cortex. Nat. Neurosci. 9, 1549 (2006).  https://doi.org/10.1038/nn1802CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikTechnische Universität BerlinBerlinGermany

Personalised recommendations