Advertisement

Confined Scroll Rings

  • Jan Frederik TotzEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Among self-organized spatio-temporal patterns rotating spiral-shaped waves are very common. This suggests, that their emergence must depend on general rules, that transcend microscopic details. As depicted in Fig. 2.1, an initially planar wave front can break up due to interaction with inhomogeneities in an active medium. The resulting wave features an open end far from any boundaries. Still, the excitation (fire) will spread from the current excited region to any surroundings that are not in their refractory, unexcitable (burnt) state. This means that the main front will continue forward, but at the wave tip the excitation can spread upwards in addition. While the tip continues on its pirouette-like motion, it becomes the source of excitation waves, that are periodically emitted into the medium. In this sense, the tip is the localized organizing center [1] of the delocalized spiral wave, that has a wavelength \(\lambda \) and rotation period T. Note that the oscillations at each location outside the spiral core are entrained to the rotation period of the spiral wave. Here, the non-equilibrium character manifests itself in the influx of external energy, that is required to return oscillators to their rest state (unburnt) so a neighboring excitation can restart the oscillation cycle.

References

  1. 1.
    A.T. Winfree, The prehistory of the Belousov–Zhabotinsky oscillator. J. Chem. Educ. 61, 661 (1984).  https://doi.org/10.1021/ed061p661CrossRefGoogle Scholar
  2. 2.
    D. Kim, D. Browder, M. Heiberg, Star Craft II. Blizzard Entertainment (2010), http://us.battle.net/sc2/en/
  3. 3.
    P.G. Kevrekidis, D.J. Frantzeskakis, R. Carretero-González, The Defocusing Nonlinear Schrödinger Equation: From Dark Solitons to Vortices and Vortex Rings (SIAM, 2015).  https://doi.org/10.1137/1.9781611973945CrossRefGoogle Scholar
  4. 4.
    P.-J. Hsu, A. Finco, L. Schmidt, A. Kubetzka, K. von Bergmann, R. Wiesendanger, Guiding spin spirals by local uniaxial strain relief. Phys. Rev. Lett. 116, 017201 (2016).  https://doi.org/10.1103/PhysRevLett.116.017201ADSCrossRefGoogle Scholar
  5. 5.
    A.R. Verma, Spiral growth on carborundum crystal faces. Nature 167, 939 (1951).  https://doi.org/10.1038/167939a0ADSCrossRefGoogle Scholar
  6. 6.
    A.A. Chernov, Formation of crystals in solutions. Contemp. Phys. 30, 251 (1989).  https://doi.org/10.1080/00107518908225517ADSCrossRefGoogle Scholar
  7. 7.
    I.S. Aranson, A.R. Bishop, I. Daruka, V.M. Vinokur, Ginzburg–Landau theory of spiral surface growth. Phys. Rev. Lett. 80, 1770 (1998).  https://doi.org/10.1103/PhysRevLett.80.1770ADSCrossRefGoogle Scholar
  8. 8.
    I. Bischofberger, B. Ray, J.F. Morris, T. Lee, S.R. Nagel, Airflows generated by an impacting drop. Soft Matter 12, 3013 (2016).  https://doi.org/10.1039/C5SM02702KADSCrossRefGoogle Scholar
  9. 9.
    S.J. Haward, R.J. Poole, M.A. Alves, P.J. Oliveira, N. Goldenfeld, A.Q. Shen, Tricritical spiral vortex instability in cross-slot flow. Phys. Rev. E 93, 031101 (2016).  https://doi.org/10.1103/PhysRevE.93.031101ADSCrossRefGoogle Scholar
  10. 10.
    E. Bodenschatz, J.R. de Bruyn, G. Ahlers, D.S. Cannell, Transitions between patterns in thermal convection. Phys. Rev. Lett. 67, 3078 (1991).  https://doi.org/10.1103/PhysRevLett.67.3078ADSCrossRefGoogle Scholar
  11. 11.
    M. Assenheimer, V. Steinberg, Transition between spiral and target states in Rayleigh–Bénard convection. Nature 367, 345 (1994).  https://doi.org/10.1038/367345a0ADSCrossRefGoogle Scholar
  12. 12.
    S.V. Kiyashko, L.N. Korzinov, M.I. Rabinovich, L.S. Tsimring, Rotating spirals in a Faraday experiment. Phys. Rev. E 54, 5037 (1996).  https://doi.org/10.1103/PhysRevE.54.5037ADSCrossRefGoogle Scholar
  13. 13.
    J.R. de Bruyn, B.C. Lewis, M.D. Shattuck, H.L. Swinney, Spiral patterns in oscillated granular layers. Phys. Rev. E 63, 041305 (2001).  https://doi.org/10.1103/PhysRevE.63.041305ADSCrossRefGoogle Scholar
  14. 14.
    R. Wille, Kármán vortex streets. Adv. Appl. Mech. 6, 273 (1960).  https://doi.org/10.1016/S0065-2156(08)70113-3CrossRefzbMATHGoogle Scholar
  15. 15.
    D. Kondepudi, I. Prigogine, Thermodynamics: From Heat Engines to Dissipative Structures (Wiley, New Jersey, 2014), http://eu.wiley.com/WileyCDA/WileyTitle/productCd-111837181X.html
  16. 16.
    J.H. Rogers, The Giant Planet Jupiter, (Cambridge University Press, Cambridge, 1995), https://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521410083
  17. 17.
    S.J. Bolton et al., Jupiter’s interior and deep atmosphere: the initial pole-to-pole passes with the Juno spacecraft. Science 356, 821 (2017).  https://doi.org/10.1126/science.aal2108ADSCrossRefGoogle Scholar
  18. 18.
    C.C. Lin, F.H. Shu, On the spiral structure of disk galaxies. Astrophys. J. 140, 646 (1964).  https://doi.org/10.1086/147955ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    B.P. Abbott et al., Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016).  https://doi.org/10.1103/PhysRevLett.116.061102ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    B.P. Abbott et al., Multi-messenger observations of a binary neutron star merger. Astrophys. J. Lett. 848, L12 (2017).  https://doi.org/10.3847/2041-8213/aa91c9ADSCrossRefGoogle Scholar
  21. 21.
    N. Wiener, A. Rosenblueth, The Mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle. Arch. Inst. Cardiol. Mex. 16, 205 (1946), https://www.ncbi.nlm.nih.gov/pubmed/20245817
  22. 22.
    M.A. Allessie, F.I. Bonke, F.J. Schopman, Circus movement in rabbit atrial muscle as a mechanism of tachycardia. III. The “leading circle” concept: a new model of circus movement in cardiac tissue without the involvement of an anatomical obstacle. Circ. Res. 41, 9 (1977).  https://doi.org/10.1161/01.RES.41.1.9CrossRefGoogle Scholar
  23. 23.
    J.M. Davidenko, P.F. Kent, D.R. Chialvo, D.C. Michaels, J. Jalife, Sustained vortex-like waves in normal isolated ventricular muscle. Proc. Natl. Acad. Sci. USA 87, 8785 (1990).  https://doi.org/10.1073/pnas.87.22.8785ADSCrossRefGoogle Scholar
  24. 24.
    F.X. Witkowski, L.J. Leon, P.A. Penkoske, W.R. Giles, M.L. Spano, W.L. Ditto, A.T. Winfree, Spatiotemporal evolution of ventricular fibrillation. Nature 392, 78 (1998).  https://doi.org/10.1038/32170ADSCrossRefGoogle Scholar
  25. 25.
    S. Luther et al., Low-energy control of electrical turbulence in the heart. Nature 475, 235 (2011).  https://doi.org/10.1038/nature10216ADSCrossRefGoogle Scholar
  26. 26.
    G. Bub, L. Glass, N.G. Publicover, A. Shrier, Bursting calcium rotors in cultured cardiac myocyte monolayers. Proc. Natl. Acad. Sci. USA 95, 10283 (1998).  https://doi.org/10.1073/pnas.95.17.10283ADSCrossRefGoogle Scholar
  27. 27.
    S. Iravanian, Y. Nabutovsky, C.-R. Kong, S. Saha, N. Bursac, L. Tung, Functional reentry in cultured monolayers of neonatal rat cardiac cells. Am. J. Physiol. Hear. Circ. Physiol. 285, H449 (2003).  https://doi.org/10.1152/ajpheart.00896.2002CrossRefGoogle Scholar
  28. 28.
    B.O. Bingen et al., Light-induced termination of spiral wave arrhythmias by optogenetic engineering of atrial cardiomyocytes. Cardiovasc. Res. 104, 194 (2014).  https://doi.org/10.1093/cvr/cvu179CrossRefGoogle Scholar
  29. 29.
    R.A.B. Burton, A. Klimas, C.M. Ambrosi, J. Tomek, A. Corbett, E. Entcheva, G. Bub, Optical control of excitation waves in cardiac tissue. Nat. Photonics 9, 813 (2015).  https://doi.org/10.1038/nphoton.2015.196ADSCrossRefGoogle Scholar
  30. 30.
    H.M. McNamara, H. Zhang, C.A. Werley, A.E. Cohen, Optically controlled oscillators in an engineered bioelectric tissue. Phys. Rev. X 6, 031001 (2016).  https://doi.org/10.1103/PhysRevX.6.031001CrossRefGoogle Scholar
  31. 31.
    G. Kastberger, E. Schmelzer, I. Kranner, Social waves in giant honeybees repel hornets. PLOS ONE 3, e3141 (2008).  https://doi.org/10.1371/journal.pone.0003141ADSCrossRefGoogle Scholar
  32. 32.
    X. Huang, W.C. Troy, Q. Yang, H. Ma, C.R. Laing, S.J. Schiff, J.-Y. Wu, Spiral waves in disinhibited mammalian neocortex. J. Neurosci. 24, 9897 (2004).  https://doi.org/10.1523/JNEUROSCI.2705-04.2004CrossRefGoogle Scholar
  33. 33.
    J. Lechleiter, S. Girard, E. Peralta, D. Clapham, Spiral calcium wave propagation and annihilation in Xenopus laevis oocytes. Science 252, 123 (1991).  https://doi.org/10.1126/science.2011747ADSCrossRefGoogle Scholar
  34. 34.
    N.A. Gorelova, J. Bureš, Spiral waves of spreading depression in the isolated chicken retina. J. Neurobiol. 14, 353 (1983).  https://doi.org/10.1002/neu.480140503CrossRefGoogle Scholar
  35. 35.
    D. Taniguchi, S. Ishihara, T. Oonuki, M. Honda-Kitahara, K. Kaneko, S. Sawai, Phase geometries of two-dimensional excitable waves govern self-organized morphodynamics of amoeboid cells. Proc. Natl. Acad. Sci. USA 110, 5016 (2013).  https://doi.org/10.1073/pnas.1218025110ADSCrossRefGoogle Scholar
  36. 36.
    K.J. Tomchik, P.N. Devreotes, Adenosine 3’, 5’-monophosphate waves in Dictyostelium discoideum: a demonstration by isotope dilution–fluorography. Science 212, 443 (1981).  https://doi.org/10.1126/science.6259734ADSCrossRefGoogle Scholar
  37. 37.
    G. Seiden, S. Curland, The tongue as an excitable medium. New J. Phys. 17, 033049 (2015).  https://doi.org/10.1088/1367-2630/17/3/033049ADSCrossRefGoogle Scholar
  38. 38.
    F. Macari, M. Landau, P. Cousin, B. Mevorah, S. Brenner, R. Panizzon, D.F. Schorderet, D. Hohl, M. Huber, Mutation in the gene for connexin 30.3 in a family with erythrokeratodermia variabilis. Am. J. Hum. Genet. 67, 1296 (2000).  https://doi.org/10.1016/S0002-9297(07)62957-7CrossRefGoogle Scholar
  39. 39.
    A.J. Welsh, E.F. Greco, F.H. Fenton, Dynamics of a human spiral wave. Phys. Today 70, 78 (2017).  https://doi.org/10.1063/PT.3.3474CrossRefGoogle Scholar
  40. 40.
    R.D. Kirkton, N. Bursac, Engineering biosynthetic excitable tissues from unexcitable cells for electrophysiological and cell therapy studies. Nat. Commun. 2, 300 (2011).  https://doi.org/10.1038/ncomms1302ADSCrossRefGoogle Scholar
  41. 41.
    W.J.E.P. Lammers, Circulating excitations and re-entry in the pregnant uterus. Pflügers Arch. Eur. J. Physiol. 433, 287 (1996).  https://doi.org/10.1007/s004240050279CrossRefGoogle Scholar
  42. 42.
    E. Pervolaraki, A.V. Holden, Spatiotemporal patterning of uterine excitation patterns in human labour. BioSystems 112, 63 (2013).  https://doi.org/10.1016/j.biosystems.2013.03.012CrossRefGoogle Scholar
  43. 43.
    S.C. Müller, T. Mair, O. Steinbock, Traveling waves in yeast extract and in cultures of Dictyostelium discoideum. Biophys. Chem. 72, 37 (1998).  https://doi.org/10.1016/S0301-4622(98)00121-5CrossRefGoogle Scholar
  44. 44.
    J.T. Groves, J. Kuriyan, Molecular mechanisms in signal transduction at the membrane. Nat. Struct. Mol. Biol. 17, 659 (2010).  https://doi.org/10.1038/nsmb.1844CrossRefGoogle Scholar
  45. 45.
    M. Gerhardt, M. Ecke, M. Walz, A. Stengl, C. Beta, G. Gerisch, Actin and PIP3 waves in giant cells reveal the inherent length scale of an excited state. J. Cell Sci. 127, 4507 (2014).  https://doi.org/10.1242/jcs.156000CrossRefGoogle Scholar
  46. 46.
    A.T. Winfree, The Geometry of Biological Time (Springer, Berlin, 2001).  https://doi.org/10.1007/978-1-4757-3484-3CrossRefzbMATHGoogle Scholar
  47. 47.
    N. Uchida, R. Golestanian, Synchronization and collective dynamics in a carpet of microfluidic rotors. Phys. Rev. Lett. 104, 178103 (2010).  https://doi.org/10.1103/PhysRevLett.104.178103ADSCrossRefGoogle Scholar
  48. 48.
    A.T. Winfree, Spiral waves of chemical activity. Science 175, 634 (1972).  https://doi.org/10.1126/science.175.4022.634ADSCrossRefGoogle Scholar
  49. 49.
    V.K. Vanag, I.R. Epstein, Inwardly rotating spiral waves in a reaction-diffusion system. Science 294, 835 (2001).  https://doi.org/10.1126/science.1064167ADSCrossRefGoogle Scholar
  50. 50.
    M. Yoneyama, A. Fujii, S. Maeda, Chemical oscillations in Ru(bpy)32+ Langmuir monolayers formed on Belousov–Zhabotinskii reaction solutions. Physica D 84, 120 (1995).  https://doi.org/10.1016/0167-2789(95)00010-2ADSCrossRefGoogle Scholar
  51. 51.
    M.R. Tinsley, D. Collison, K. Showalter, Propagating precipitation waves: experiments and modeling. J. Phys. Chem. A 117, 12719 (2013).  https://doi.org/10.1021/jp4095479CrossRefGoogle Scholar
  52. 52.
    S. Jakubith, H.H. Rotermund, W. Engel, A. von Oertzen, G. Ertl, Spatiotemporal concentration patterns in a surface reaction: propagating and standing waves, rotating spirals, and turbulence. Phys. Rev. Lett. 65, 3013 (1990).  https://doi.org/10.1103/PhysRevLett.65.3013ADSCrossRefGoogle Scholar
  53. 53.
    I. Krastev, M.T.M. Koper, Pattern formation during the electrodeposition of a silver-antimony alloy. Physica A 213, 199 (1995).  https://doi.org/10.1016/0378-4371(94)00161-LADSCrossRefGoogle Scholar
  54. 54.
    K. Agladze, O. Steinbock, Waves and vortices of rust on the surface of corroding steel. J. Phys. Chem. A 104, 9816 (2000).  https://doi.org/10.1021/jp002237nCrossRefGoogle Scholar
  55. 55.
    J.F. Nye, M.V. Berry, Dislocations in wave trains. Proc. R. Soc. A 336, 165 (1974).  https://doi.org/10.1098/rspa.1974.0012ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    P. Coullet, L. Gil, F. Rocca, Optical vortices. Opt. Commun. 73, 403 (1989).  https://doi.org/10.1016/0030-4018(89)90180-6ADSCrossRefGoogle Scholar
  57. 57.
    I.V. Basistiy, V.Y. Bazhenov, M.S. Soskin, M.V. Vasnetsov, Optics of light beams with screw dislocations. Opt. Commun. 103, 422 (1993).  https://doi.org/10.1016/0030-4018(93)90168-5ADSCrossRefGoogle Scholar
  58. 58.
    H.G. Pearlman, P.D. Ronney, Self-organized spiral and circular waves in premixed gas flames. J. Chem. Phys. 101, 2632 (1994).  https://doi.org/10.1063/1.467636ADSCrossRefGoogle Scholar
  59. 59.
    P. Coullet, F. Plaza, Excitable spiral waves in nematic liquid crystals. Int. J. Bifurc. Chaos 04, 1173 (1994).  https://doi.org/10.1142/S0218127494000873CrossRefzbMATHGoogle Scholar
  60. 60.
    A. Martinez, I.I. Smalyukh, Light-driven dynamic Archimedes spirals and periodic oscillatory patterns of topological solitons in anisotropic soft matter. Opt. Express 23, 4591 (2015).  https://doi.org/10.1364/OE.23.004591ADSCrossRefGoogle Scholar
  61. 61.
    M. Schwabe, U. Konopka, P. Bandyopadhyay, G.E. Morfill, Pattern formation in a complex plasma in high magnetic fields. Phys. Rev. Lett. 106, 215004 (2011).  https://doi.org/10.1103/PhysRevLett.106.215004ADSCrossRefGoogle Scholar
  62. 62.
    L. Dong, F. Liu, S. Liu, Y. He, W. Fan, Observation of spiral pattern and spiral defect chaos in dielectric barrier discharge in argon/air at atmospheric pressure. Phys. Rev. E 72, 046215 (2005).  https://doi.org/10.1103/PhysRevE.72.046215ADSCrossRefGoogle Scholar
  63. 63.
    Y. Li, H. Li, Y. Zhu, M. Zhang, J. Yang, Type of spiral wave with trapped ions. Phys. Rev. E 84, 066212 (2011).  https://doi.org/10.1103/PhysRevE.84.066212ADSCrossRefGoogle Scholar
  64. 64.
    R. Lauter, C. Brendel, S.J.M. Habraken, F. Marquardt, Pattern phase diagram for two-dimensional arrays of coupled limit-cycle oscillators. Phys. Rev. E 92, 012902 (2015).  https://doi.org/10.1103/PhysRevE.92.012902ADSMathSciNetCrossRefGoogle Scholar
  65. 65.
    R. Kapral, R. Livi, G.-L. Oppo, A. Politi, Dynamics of complex interfaces. Phys. Rev. E 49, 2009 (1994).  https://doi.org/10.1103/PhysRevE.49.2009ADSMathSciNetCrossRefGoogle Scholar
  66. 66.
    I. Aranson, M. Gitterman, B.Y. Shapiro, Spiral fluxons and a characteristic frequency in two-dimensional Josephson junctions. Phys. Rev. B 52, 12878 (1995).  https://doi.org/10.1103/PhysRevB.52.12878ADSCrossRefGoogle Scholar
  67. 67.
    D.P. Zipes, J. Jalife, W.G. Stevenson, Electrophysiology: From Cell to Bedside (Elsevier, Amsterdam, 2017)Google Scholar
  68. 68.
    T. Quail, A. Shrier, L. Glass, Spatial symmetry breaking determines spiral wave chirality. Phys. Rev. Lett. 113, 158101 (2014).  https://doi.org/10.1103/PhysRevLettADSCrossRefGoogle Scholar
  69. 69.
    V. Zykov, A. Krekhov, E. Bodenschatz, Fast propagation regions cause self-sustained reentry in excitable media. Proc. Natl. Acad. Sci. USA 114, 1281 (2017).  https://doi.org/10.1073/pnas.1611475114ADSCrossRefGoogle Scholar
  70. 70.
    A.T. Winfree, Electrical turbulence in three-dimensional heart muscle. Science 266, 1003 (1994).  https://doi.org/10.1126/science.7973648ADSCrossRefGoogle Scholar
  71. 71.
    A.T. Winfree, S.H. Strogatz, Singular filaments organize chemical waves in three dimensions: I. Geometrically simple waves. Physica D 8, 35 (1983).  https://doi.org/10.1016/0167-2789(83)90309-3ADSMathSciNetCrossRefGoogle Scholar
  72. 72.
    A. Winfree, S. Strogatz, Singular filaments organize chemical waves in three dimensions II. Twisted waves. Physica D 9, 65 (1983).  https://doi.org/10.1016/0167-2789(83)90292-0ADSMathSciNetCrossRefGoogle Scholar
  73. 73.
    A. Winfree, S. Strogatz, Singular filaments organize chemical waves in three dimensions: III. Knotted waves. Physica D 9, 333 (1983).  https://doi.org/10.1016/0167-2789(83)90276-2ADSMathSciNetCrossRefGoogle Scholar
  74. 74.
    A. Winfree, S. Strogatz, Singular filaments organize chemical waves in three dimensions: IV. Wave taxonomy. Physica D 13, 221 (1984).  https://doi.org/10.1016/0167-2789(84)90279-3ADSMathSciNetCrossRefGoogle Scholar
  75. 75.
    A.B. Medvinsky, A.V. Panfilov, A.M. Pertsov, Properties of rotating waves in three dimensions. Scroll rings in myocard, in Self-Organization Autowaves and Structures Far from Equilibrium, vol. 28, ed. by V.I. Krinsky (Springer, Berlin, 1984), pp. 195–199.  https://doi.org/10.1007/978-3-642-70210-5_36Google Scholar
  76. 76.
    A.T. Winfree, Scroll-shaped waves of chemical activity in three dimensions. Science 181, 937 (1973).  https://doi.org/10.1126/science.181.4103.937ADSCrossRefGoogle Scholar
  77. 77.
    H. Kitahata, N. Yoshinaga, K.H. Nagai, Y. Sumino, Spontaneous motion of a Belousov–Zhabotinsky reaction droplet coupled with a spiral wave. Chem. Lett. 41, 1052 (2012).  https://doi.org/10.1246/cl.2012.1052CrossRefGoogle Scholar
  78. 78.
    J.P. Keener, The dynamics of three-dimensional scroll waves in excitable media. Physica D 31, 269 (1988).  https://doi.org/10.1016/0167-2789(88)90080-2ADSMathSciNetCrossRefzbMATHGoogle Scholar
  79. 79.
    W.W. Mullins, Two-dimensional motion of idealized grain boundaries. J. Appl. Phys. 27, 900 (1956).  https://doi.org/10.1063/1.1722511ADSMathSciNetCrossRefGoogle Scholar
  80. 80.
    V.N. Biktashev, A.V. Holden, H. Zhang, Tension of organizing filaments of scroll waves. Philos. Trans. R. Soc. Lond. A 347, 611 (1994).  https://doi.org/10.1098/rsta.1994.0070ADSMathSciNetCrossRefzbMATHGoogle Scholar
  81. 81.
    S. Alonso, F. Sagués, A.S. Mikhailov, Taming winfree turbulence of scroll waves in excitable media. Science 299, 1722 (2003).  https://doi.org/10.1126/science.1080207ADSCrossRefGoogle Scholar
  82. 82.
    O. Steinbock, V. Zykov, S.C. Müller, Control of spiral-wave dynamics in active media by periodic modulation of excitability. Nature 366, 322 (1993).  https://doi.org/10.1038/366322a0ADSCrossRefGoogle Scholar
  83. 83.
    M. Markus, Z. Nagy-Ungvarai, B. Hess, Phototaxis of spiral waves. Science 257, 225 (1992).  https://doi.org/10.1126/science.257.5067.225ADSCrossRefGoogle Scholar
  84. 84.
    O. Steinbock, S. Müller, Chemical spiral rotation is controlled by light-induced artificial cores. Physica A 188, 61 (1992).  https://doi.org/10.1016/0378-4371(92)90253-MADSCrossRefGoogle Scholar
  85. 85.
    J. Schlesner, V.S. Zykov, H. Brandtstädter, I. Gerdes, H. Engel, Efficient control of spiral wave location in an excitable medium with localized heterogeneities. New J. Phys. 10, 015003 (2008).  https://doi.org/10.1088/1367-2630/10/1/015003ADSCrossRefGoogle Scholar
  86. 86.
    H. Brandtstädter, M. Braune, I. Schebesch, H. Engel, Experimental study of the dynamics of spiral pairs in light-sensitive Belousov–Zhabotinskii media using an open-gel reactor. Chem. Phys. Lett. 323, 145 (2000).  https://doi.org/10.1016/S0009-2614(00)00486-3ADSCrossRefGoogle Scholar
  87. 87.
    M. Gómez-Gesteira, A.P. Muñuzuri, V. Pérez-Muñuzuri, V. Pérez-Villar, Boundary-imposed spiral drift. Phys. Rev. E 53, 5480 (1996).  https://doi.org/10.1103/PhysRevE.53.5480ADSCrossRefzbMATHGoogle Scholar
  88. 88.
    J.J. Tyson, J.P. Keener, Singular perturbation theory of traveling waves in excitable media (a review). Physica D 32, 327 (1988).  https://doi.org/10.1016/0167-2789(88)90062-0ADSMathSciNetCrossRefzbMATHGoogle Scholar
  89. 89.
    P. Foerster, S.C. Müller, B. Hess, Curvature and propagation velocity of chemical waves. Science 241, 685 (1988).  https://doi.org/10.1126/science.241.4866.685ADSCrossRefGoogle Scholar
  90. 90.
    D. Horváth, V. Petrov, S.K. Scott, K. Showalter, Instabilities in propagating reaction-diffusion fronts. J. Chem. Phys. 98, 6332 (1993).  https://doi.org/10.1063/1.465062ADSCrossRefGoogle Scholar
  91. 91.
    D. Margerit, D. Barkley, Large-excitability asymptotics for scroll waves in three-dimensional excitable media. Phys. Rev. E 66 (2002).  https://doi.org/10.1103/PhysRevE.66.036214
  92. 92.
    V. Biktashev, A. Holden, Resonant drift of autowave vortices in two dimensions and the effects of boundaries and inhomogeneities. Chaos 5, 575 (1995).  https://doi.org/10.1016/0960-0779(93)E0044-CCrossRefzbMATHGoogle Scholar
  93. 93.
    I.V. Biktasheva, V.N. Biktashev, Wave-particle dualism of spiral waves dynamics. Phys. Rev. E 67, 026221 (2003).  https://doi.org/10.1103/PhysRevE.67.026221ADSCrossRefGoogle Scholar
  94. 94.
    V.N. Biktashev, I.V. Biktasheva, Dynamics of filaments of scroll waves, in Engineering of Chemical Complexity II (World Scientific, Singapore, 2014), pp. 221–238.  https://doi.org/10.1142/9789814616133_0013CrossRefGoogle Scholar
  95. 95.
    T. Amemiya, P. Kettunen, S. Kádár, T. Yamaguchi, K. Showalter, Formation and evolution of scroll waves in photosensitive excitable media. Chaos 8, 872 (1998).  https://doi.org/10.1063/1.166373CrossRefGoogle Scholar
  96. 96.
    T. Bánsági, O. Steinbock, Nucleation and collapse of scroll rings in excitable media. Phys. Rev. Lett. 97, 198301 (2006).  https://doi.org/10.1103/PhysRevLett.97.198301ADSCrossRefGoogle Scholar
  97. 97.
    T. Bánsági, O. Steinbock, Three-dimensional spiral waves in an excitable reaction system: initiation and dynamics of scroll rings and scroll ring pairs. Chaos 18, 026102 (2008).  https://doi.org/10.1063/1.2896100ADSCrossRefGoogle Scholar
  98. 98.
    N.P. Das, S. Dutta, Interaction of scroll waves in an excitable medium: reconnection and repulsion. Phys. Rev. E 91, 030901 (2015).  https://doi.org/10.1103/PhysRevE.91.030901
  99. 99.
    M. Vinson, S. Mironov, S. Mulvey, A. Pertsov, Control of spatial orientation and lifetime of scroll rings in excitable media. Nature 386, 477 (1997).  https://doi.org/10.1038/386477a0ADSCrossRefGoogle Scholar
  100. 100.
    C. Luengviriya, S.C. Müller, M.J.B. Hauser, Reorientation of scroll rings in an advective field. Phys. Rev. E 77, 015201 (2008).  https://doi.org/10.1103/PhysRevE.77.015201
  101. 101.
    Z. Jiménez, B. Marts, O. Steinbock, Pinned scroll rings in an excitable system. Phys. Rev. Lett. 102 (2009).  https://doi.org/10.1103/PhysRevLett.102.244101
  102. 102.
    Z.A. Jiménez, O. Steinbock, Pinning of vortex rings and vortex networks in excitable systems. Europhys. Lett. 91, 50002 (2010).  https://doi.org/10.1209/0295-5075/91/50002ADSCrossRefGoogle Scholar
  103. 103.
    S. Dutta, O. Steinbock, Topologically mismatched pinning of scroll waves. J. Phys. Chem. Lett. 2, 945 (2011).  https://doi.org/10.1021/jz2003183CrossRefGoogle Scholar
  104. 104.
    S.C. Müller, T. Plesser, B. Hess, Two-dimensional spectrophotometry and pseudo-color representation of chemical reaction patterns. Sci. Nat. 73, 165 (1986)Google Scholar
  105. 105.
    P. Ruoff, Excitability in a closed stirred Belousov–Zhabotinskii system. Chem. Phys. Lett. 90, 76 (1982).  https://doi.org/10.1016/0009-2614(82)83328-9ADSCrossRefGoogle Scholar
  106. 106.
    A. Pertsov, M. Vinson, S.C. Müller, Three-dimensional reconstruction of organizing centers in excitable chemical media. Physica D 63, 233 (1993).  https://doi.org/10.1016/0167-2789(93)90157-VADSCrossRefzbMATHGoogle Scholar
  107. 107.
    Z.A. Jiménez, O. Steinbock, Stationary vortex loops induced by filament interaction and local pinning in a chemical reaction-diffusion system. Phys. Rev. Lett. 109 (2012).  https://doi.org/10.1103/PhysRevLett.109.098301
  108. 108.
    Z.A. Jiménez, O. Steinbock, Scroll wave filaments self-wrap around unexcitable heterogeneities. Phys. Rev. E 86, 036205 (2012).  https://doi.org/10.1103/PhysRevE.86.036205ADSCrossRefGoogle Scholar
  109. 109.
    T. Bánsági Jr., O. Steinbock, Negative filament tension of scroll rings in an excitable system. Phys. Rev. E 76, 045202 (2007).  https://doi.org/10.1103/PhysRevE.76.045202ADSCrossRefGoogle Scholar
  110. 110.
    P.J. Nandapurkar, A.T. Winfree, Dynamical stability of untwisted scroll rings in excitable media. Physica D 35, 277 (1989).  https://doi.org/10.1016/0167-2789(89)90070-5ADSMathSciNetCrossRefzbMATHGoogle Scholar
  111. 111.
    M. Courtemanche, W. Skaggs, A. Winfree, Stable three-dimensional action potential circulation in the Fitzhugh–Nagumo model. Physica D 41, 173 (1990).  https://doi.org/10.1016/0167-2789(90)90120-EADSMathSciNetCrossRefzbMATHGoogle Scholar
  112. 112.
    A. Azhand, J.F. Totz, H. Engel, Three-dimensional autonomous pacemaker in the photosensitive Belousov–Zhabotinsky medium. Europhys. Lett. 108, 10004 (2014).  https://doi.org/10.1209/0295-5075/108/10004ADSCrossRefGoogle Scholar
  113. 113.
    I. Aranson, L. Kramer, A. Weber, On the interaction of spiral waves in non-equilibrium media. Physica D 53, 376 (1991).  https://doi.org/10.1016/0167-2789(91)90069-LADSCrossRefzbMATHGoogle Scholar
  114. 114.
    R.R. Aliev, A.B. Rovinskii, Spiral waves in the homogeneous and inhomogeneous Belousov–Zhabotinskii reaction. J. Phys. Chem. 96, 732 (1992).  https://doi.org/10.1021/j100181a039CrossRefGoogle Scholar
  115. 115.
    M.-A. Bray, J.P. Wikswo, Interaction dynamics of a pair of vortex filament rings. Phys. Rev. Lett. 90, 238303 (2003).  https://doi.org/10.1103/PhysRevLettADSCrossRefGoogle Scholar
  116. 116.
    F. Paul, Dreidimensionale Erregungswellen in oszillatorischen Medien. Diploma thesis, TU Berlin, Berlin, 2011Google Scholar
  117. 117.
    D.A. Kulawiak, über die Wechselwirkung rotierender dreidimensionaler Erregungswellen mit begrenzenden Neumann–Rändern. M.Sc. thesis, TU Berlin, 2014Google Scholar
  118. 118.
    W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, Cambridge, 2007), http://www.cambridge.org/de/academic/subjects/mathematics/numerical-recipes/numerical-recipes-art-scientific-computing-3rd-edition?format=HB&utm_source=shortlink&utm_medium=shortlink&utm_campaign=numericalrecipes
  119. 119.
    W. Skaggs, E. Lugosi, E. Winfree, Stable vortex rings of excitation in neuroelectric media. IEEE Trans. Circuits Syst. 35, 784 (1988).  https://doi.org/10.1109/31.1824CrossRefGoogle Scholar
  120. 120.
    V.A. Davydov, A.S. Mikhailov, V.S. Zykov, Kinematical theory of autowave patterns in excitable media, in Nonlinear Waves in Active Media, ed. by P.J. Engelbrecht (Springer, Berlin, 1989), pp. 38–51.  https://doi.org/10.1007/978-3-642-74789-2_6CrossRefGoogle Scholar
  121. 121.
    A. Winfree, Stable particle-like solutions to the nonlinear wave equations of three-dimensional excitable media. SIAM Rev. 32, 1 (1990).  https://doi.org/10.1137/1032001MathSciNetCrossRefzbMATHGoogle Scholar
  122. 122.
    J.F. Totz, H. Engel, O. Steinbock, Spatial confinement causes lifetime enhancement and expansion of vortex rings with positive filament tension. New J. Phys. 17, 093043 (2015).  https://doi.org/10.1088/1367-2630/17/9/093043ADSCrossRefGoogle Scholar
  123. 123.
    V. Pérez-Muñuzuri, F. Sagués, J.M. Sancho, Lifetime enhancement of scroll rings by spatiotemporal fluctuations. Phys. Rev. E 62, 94 (2000).  https://doi.org/10.1103/PhysRevE.62.94ADSCrossRefGoogle Scholar
  124. 124.
    R.-M. Mantel, D. Barkley, Parametric forcing of scroll-wave patterns in three-dimensional excitable media. Physica D 149, 107 (2001)ADSCrossRefGoogle Scholar
  125. 125.
    S. Alonso, F. Sagués, A.S. Mikhailov, Periodic forcing of scroll rings and control of Winfree turbulence in excitable media. Chaos 16, 023124 (2006).  https://doi.org/10.1063/1.2203589ADSMathSciNetCrossRefzbMATHGoogle Scholar
  126. 126.
    V. Zykov, H. Engel, Feedback-mediated control of spiral waves. Physica D 199, 243 (2004).  https://doi.org/10.1016/j.physd.2004.10.001ADSMathSciNetCrossRefzbMATHGoogle Scholar
  127. 127.
    V. Zykov, G. Bordiougov, H. Brandtstädter, I. Gerdes, H. Engel, Global control of spiral wave dynamics in an excitable domain of circular and elliptical shape. Phys. Rev. Lett. 92, 018304 (2004).  https://doi.org/10.1103/PhysRevLett.92.018304
  128. 128.
    I. Bakas, C. Sourdis, Dirichlet sigma models and mean curvature flow. J. High Energy Phys. 2007, 057 (2007).  https://doi.org/10.1088/1126-6708/2007/06/057MathSciNetCrossRefGoogle Scholar
  129. 129.
    K.I. Agladze, V.I. Krinsky, A.V. Panfilov, H. Linde, L. Kuhnert, Three-dimensional vortex with a spiral filament in a chemically active medium. Physica D 39, 38 (1989).  https://doi.org/10.1016/0167-2789(89)90037-7ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikTechnische Universität BerlinBerlinGermany

Personalised recommendations