Abstract
The second law of thermodynamics [1] states, that during an irreversible process the total entropy S in an isolated system always grows \(\frac{d_i S}{d t} > 0\). As time passes, matter will decay from an ordered, but improbable state to a disordered and more probable state. Yet structures of high order, namely life forms, exist and very successfully so: From the microscopic bacterium Pelagibacter ubique [2] that measures just about 5\(\,\upmu {\text {m}}\) but makes up for the largest cumulated species biomass worldwide to the orders of magnitude larger blue whale (Balaenoptera musculus) reaching about 30\({\,\text {m}}\) in size [3]. Life prevails despite inhospitable environments that are devoid of oxygen [4], below freezing at −20\(\,^{\circ }\mathrm{C}\) [5] or close to boiling temperatures [6], to just give a few examples.
References
- 1.R. Clausius, Ueber verschiedenefür die Anwendung bequeme Formen der Hauptgleichungen dermechanischen Wärmetheorie. Ann. Phys. 201, 353 (1865). https://doi.org/10.1002/andp.18652010702ADSCrossRefGoogle Scholar
- 2.M.S. Rappé, S.A. Connon, K.L. Vergin, S.J. Giovannoni, Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418, 630 (2002). https://doi.org/10.1038/nature00917ADSCrossRefGoogle Scholar
- 3.B. Würsig, W. Perrin, B. Würsig, J. Thewissen (eds.), Encyclopedia of Marine Mammals (Academic, New York, 2008). https://www.elsevier.com/books/encyclopedia-of-marine-mammals/wursig/978-0-12-373553-9
- 4.R. Danovaro, A. Dell’Anno, A. Pusceddu, C. Gambi, I. Heiner, R.M. Kristensen, The first metazoa living in permanently anoxic conditions. BMC Biol. 8, 30 (2010). https://doi.org/10.1186/1741-7007-8-30CrossRefGoogle Scholar
- 5.A. Clarke, G.J. Morris, F. Fonseca, B.J. Murray, E. Acton, H.C. Price, A low temperature limit for life on earth. PLOS ONE 8, e66207 (2013). https://doi.org/10.1371/journal.pone.0066207ADSCrossRefGoogle Scholar
- 6.G. Fiala, K.O. Stetter, Pyrococcus furiosus sp.nov. represents a novel genus of marine heterotrophic archaebacteria growingoptimally at 100 \(^\circ \)C. Arch. Microbiol. 145, 56 (1986). https://doi.org/10.1007/BF00413027
- 7.E. Schrödinger, What Is Life? The Physical Aspect of the Living Cell (Cambridge University, Cambridge, 1944). http://www.cambridge.org/catalogue/catalogue.asp?isbn=0521427088
- 8.J.D. Watson, F.H.C. Crick, Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171, 737 (1953). https://doi.org/10.1038/171737a0ADSCrossRefGoogle Scholar
- 9.P. Glansdorff, I. Prigogine, Thermodynamic Theory of Structure, Stability and Fluctuations (Wiley, New York, 1971). https://books.google.de/books/about/Thermodynamic_Theory_of_Structure_Stabil.html?id=vf9QAAAAMAAJ&redir_esc=y
- 10.I. Prigogine, Time, structure, and fluctuations. Science 201, 777 (1978). https://doi.org/10.1126/science.201.4358.777ADSCrossRefGoogle Scholar
- 11.A.M. Turing, The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B 237, 37 (1952). https://doi.org/10.1098/rstb.1952.0012
- 12.A.T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biol. 16, 15 (1967). https://doi.org/10.1016/0022-5193(67)90051-3CrossRefGoogle Scholar
- 13.T.H. Maiman, Stimulated optical radiation in ruby. Nature 187, 493 (1960). https://doi.org/10.1038/187493a0ADSCrossRefGoogle Scholar
- 14.H. Haken, H. Sauermann, Nonlinear interaction of laser modes. Z. Physik 173, 261 (1963). https://doi.org/10.1007/BF01377828
- 15.H. Haken, Synergetics: Introduction and Advanced Topics (Springer, Berlin, 2004). https://doi.org/10.1007/978-3-662-10184-1CrossRefGoogle Scholar
- 16.W. Ebeling, Strukturbildung bei Irreversiblen Prozessen. Eine Einführung in die Theorie dissipativer Strukturen (Teubner, 1976). https://books.google.de/books/about/Strukturbildung_bei_irreversiblen_Prozes.html?id=Zt1vnQEACAAJ&redir_esc=y
- 17.G. Ertl, Reactions at surfaces: from atoms to complexity (Nobel Lecture). Angew. Chem., Int. Ed. 47, 3524 (2008). https://doi.org/10.1002/anie.200800480CrossRefGoogle Scholar
- 18.W.A. Zehring, D.A. Wheeler, P. Reddy, R.J. Konopka, C.P. Kyriacou, M. Rosbash, J.C. Hall, P-elementtransformation with period locus DNA restores rhythmicity to mutant, arrhythmic drosophila melanogaster. Cell 39, 369 (1984). https://doi.org/10.1016/0092-8674(84)90015-1CrossRefGoogle Scholar
- 19.L.B. Vosshall, J.L. Price, A. Sehgal, L. Saez, M.W. Young, Block in nuclear localization of period protein by a second clock mutation, timeless. Science 263, 1606 (1994). https://doi.org/10.1126/science.8128247ADSCrossRefGoogle Scholar
- 20.J.L. England, Statistical physics of self-replication. J. Chem. Phys. 139, 121923 (2013). https://doi.org/10.1063/1.4818538ADSCrossRefGoogle Scholar
- 21.J.L. England, Dissipative adaptation in driven self-assembly. Nat. Nanotechnol. 10, 919 (2015). https://doi.org/10.1038/nnano.2015.250ADSCrossRefGoogle Scholar
- 22.J.M. Horowitz, J.L. England, Spontaneous fine-tuning to environment in many-species chemical reaction networks. Proc. Natl. Acad. Sci. U.S.A. 114, 7565 (2017). https://doi.org/10.1073/pnas.1700617114ADSCrossRefGoogle Scholar
- 23.Y.S. Kim, R. Tamate, A.M. Akimoto, R. Yoshida, Recent developments in self-oscillating polymeric systems as smart materials: from polymers to bulk hydrogels. Mater. Horiz. 4, 38 (2017). https://doi.org/10.1039/C6MH00435KCrossRefGoogle Scholar
- 24.M. Wehner, R.L. Truby, D.J. Fitzgerald, B. Mosadegh, G.M. Whitesides, J.A. Lewis, R.J. Wood, An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536, 451 (2016). https://doi.org/10.1038/nature19100ADSCrossRefGoogle Scholar
- 25.H. Ke, M.R. Tinsley, A. Steele, F. Wang, K. Showalter, Link weight evolution in a network of coupled chemical oscillators. Phys. Rev. E 89, 052712 (2014). https://doi.org/10.1103/PhysRevE.89.052712
- 26.P.A. Merolla, et al., A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345, 668 (2014). https://doi.org/10.1126/science.1254642ADSCrossRefGoogle Scholar
- 27.X. Lu, L. Ren, Q. Gao, Y. Zhao, S. Wang, J. Yang, I.R. Epstein, Photophobic and phototropic movement of a self-oscillating gel. Chem. Commun. 49, 7690 (2013). https://doi.org/10.1039/c3cc44480eCrossRefGoogle Scholar
- 28.J.C. Nawroth, H. Lee, A.W. Feinberg, C.M. Ripplinger, M.L. McCain, A. Grosberg, J.O. Dabiri, K.K. Parker, A tissue-engineered jellyfish with biomimetic propulsion. Nat. Biotechnol. 30, 792 (2012). https://doi.org/10.1038/nbt.2269CrossRefGoogle Scholar
- 29.S.-J. Park, et al., Phototactic guidance of a tissue-engineered soft-robotic ray. Science 353, 158 (2016). https://doi.org/10.1126/science.aaf4292ADSCrossRefGoogle Scholar
- 30.T. Patino, R. Mestre, S. Sánchez, Miniaturized softbio-hybrid robotics: a step forward into healthcare applications. Lab Chip 16, 3626 (2016). https://doi.org/10.1039/C6LC90088GCrossRefGoogle Scholar
- 31.M.S. Lundberg, J.T. Baldwin, D.B. Buxton, Building a bioartificial heart: obstacles and opportunities. J. Thorac. Cardiovasc. Surg. 153, 748 (2017). https://doi.org/10.1016/j.jtcvs.2016.10.103CrossRefGoogle Scholar
- 32.H. Helmholtz, On the Sensations of Tone (Dover Publications, New York, 2009). https://doi.org/10.1017/CBO9780511701801
- 33.E.R. Kandel, J.H. Schwartz, T.M. Jessell, S.A. Siegelbaum, A.J. Hudspeth (eds.), Principles of Neural Science (McGraw-Hill, USA, 2012). http://www.principlesofneuralscience.com/
- 34.A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500 (1952). https://doi.org/10.1113/jphysiol.1952.sp004764CrossRefGoogle Scholar
- 35.A.A. Berryman, The orgins and evolution of predator-prey theory. Ecology 73, 1530 (1992). https://doi.org/10.2307/1940005CrossRefGoogle Scholar
- 36.M.B. Elowitz, S. Leibler, A synthetic oscillatory network of transcriptional regulators. Nature 403, 335 (2000). https://doi.org/10.1038/35002125ADSCrossRefGoogle Scholar
- 37.E. Hamilton, N. Bruot, P. Cicuta, The chimera state in colloidal phase oscillators with hydrodynamic interaction. Chaos 27, 123108 (2017). https://doi.org/10.1063/1.4989466CrossRefGoogle Scholar
- 38.J. Keener, J. Sneyd, Mathematical Physiology: I: Cellular Physiology (Springer, Berlin, 2009). http://www.springer.com/de/book/9780387758466
- 39.A. Goldbeter, Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of Periodic and Chaotic Behaviour (Cambridge University, Cambridge, 1996). https://doi.org/10.1017/CBO9780511608193
- 40.A.T. Winfree, The Geometry of Biological Time (Springer, Berlin, 2001). https://doi.org/10.1007/978-1-4757-3484-3CrossRefGoogle Scholar
- 41.R.M. Noyes, A simple explanation of the salt water oscillator. J. Chem. Edu. 66, 207 (1989). https://doi.org/10.1021/ed066p207ADSCrossRefGoogle Scholar
- 42.T.S. Briggs, W.C. Rauscher, An oscillating iodine clock. J. Chem. Edu. 50, 496 (1973). https://doi.org/10.1021/ed050p496ADSCrossRefGoogle Scholar
- 43.W.C. Bray, A peridic reaction in homogeneous solution and its relation to catalysis. J. Am. Chem. Soc. 43, 1262 (1921). http://pubs.acs.org/doi/abs/10.1021/ja01439a007CrossRefGoogle Scholar
- 44.I.R. Epstein, K. Kustin, P.D. Kepper, M. Orbán, Oscillating chemical reactions. Sci. Am. 248, 112 (1983). https://doi.org/10.1038/scientificamerican0383-112CrossRefGoogle Scholar
- 45.I.Z. Kiss, Y. Zhai, J.L. Hudson, Predicting mutual entrainment of oscillators with experiment-based phase models. Phys. Rev. Lett. 94, 248301 (2005). https://doi.org/10.1103/PhysRevLett.94.248301
- 46.N. Srinivas, J. Parkin, G. Seelig, E. Winfree, D. Soloveichik, Enzyme-free nucleicacid dynamical systems. Science 358, eaal2052 (2017). https://doi.org/10.1126/science.aal2052CrossRefGoogle Scholar
- 47.S.-W. Lin, J. Keizer, P.A. Rock, H. Stenschke, On the mechanism of oscillations in the “Beating Mercury Heart”. Proc. Natl. Acad. Sci. U.S.A. 71, 4477 (1974). https://doi.org/10.1073/pnas.71.11.4477ADSCrossRefGoogle Scholar
- 48.V.I. Nekorkin, Introduction to Nonlinear Oscillations (Wiley, New York, 2016). https://onlinelibrary.wiley.com/doi/book/10.1002/9783527695942
- 49.A.A. Andronov, A.A. Vitt, S.E. Khaikin, Theory of Oscillators (Elsevier, 1966). https://doi.org/10.1016/C2013-0-06631-5
- 50.M. Sargent, M.O. Scully, W.E. Lamb, Laser Physics (Westview, 1974). https://www.crcpress.com/Laser-Physics/Sargent-Sargent-Scully-Lamb/p/book/9780201069037
- 51.N. Calander, T. Claeson, S. Rudner, A subharmonic Josephson relaxation oscillator—amplification and locking. Appl. Phys. Lett. 39, 504 (1981). https://doi.org/10.1063/1.92782ADSCrossRefGoogle Scholar
- 52.M. P. Païdoussis, Fluid-Structure Interactions: Cross-Flow-Induced Instabilities (Cambridge University, Cambridge, 2014). https://www.cambridge.org/de/academic/subjects/engineering/thermal-fluids-engineering/fluid-structure-interactions-cross-flow-induced-instabilities?format=PB&isbn=9781107652958
- 53.N.H. Fletcher, The non linear physics of musical instruments. Rep. Prog. Phys. 62, 723 (1999). https://doi.org/10.1088/0034-4885/62/5/202ADSCrossRefGoogle Scholar
- 54.B.H. Story, An overview of the physiology, physics and modeling of the sound source for vowels. Acoust. Sci. Technol. 23, 195 (2002). https://doi.org/10.1250/ast.23.195ADSCrossRefGoogle Scholar
- 55.A. Wickens, Fundamentals of Rail Vehicle Dynamics (CRC, 2005). https://www.crcpress.com/Fundamentals-of-Rail-Vehicle-Dynamics/Wickens/p/book/9789026519468
- 56.P. Horowitz, W. Hill, The Art of Electronics (Cambridge University, Cambridge, 2015). https://www.cambridge.org/us/academic/subjects/physics/electronics-physicists/art-electronics-3rd-edition?format=HB
- 57.V.P. Zhuravlev, D.M. Klimov, Theory of the shimmy phenomenon. Mech. Solids 45, 324 (2010). https://doi.org/10.3103/S0025654410030039ADSCrossRefGoogle Scholar
- 58.P. Landa, D. Vlasov, The geyser as a self-oscillatory system. Randomness or dynamical chaos? Proc. Inst. Mech. Eng. C 223, 1103 (2009). https://doi.org/10.1243/09544062JMES1089Google Scholar
- 59.T. Putelat, J.R. Willis, J.H.P. Dawes, On the seismic cycle seen as a relaxation oscillation. Philos. Mag. 88, 3219 (2008). https://doi.org/10.1080/14786430802216374ADSCrossRefGoogle Scholar
- 60.M. Schulz, A. Paul, A. Timmermann, Relaxation oscillators in concert: a framework for climate change at millennial time scales during the late Pleistocene. Geophys. Res. Lett. 29, 46 (2002). https://doi.org/10.1029/2002GL016144CrossRefGoogle Scholar
- 61.M. Crucifix, Oscillators and relaxation phenomena in Pleistocene climate theory. Phil. Trans. R. Soc. A 370, 1140 (2012). https://doi.org/10.1098/rsta.2011.0315ADSCrossRefGoogle Scholar
- 62.A.B. Pippard, The Physics of Vibration (Cambridge University, Cambridge, 1989). https://doi.org/10.1017/CBO9780511622908
- 63.H.R. Crane, What does the drinking bird know about jet lag? Phys. Teach. 27, 470 (1989). https://doi.org/10.1119/1.2342832ADSCrossRefGoogle Scholar
- 64.J. Grasman, Asymptotic Methods for Relaxation Oscillations and Applications (Springer, Berlin, 1987). http://www.springer.com/de/book/9780387965130CrossRefGoogle Scholar
- 65.I. Finnie, R.L. Curl, Physics in a Toy Boat. Am. J. Phys. 31, 289 (1963). https://doi.org/10.1119/1.1969435ADSCrossRefGoogle Scholar
- 66.P. Chagnonm, Animated displays V: Relaxation oscillators. Phys. Teach. 32, 432 (1994). https://doi.org/10.1119/1.2344069ADSCrossRefGoogle Scholar
- 67.K. Balasubramanian, R.I. Sujith, Thermoacoustic instability in a Rijke tube: Non-normality and nonlinearity. Phys. Fluids 20, 044103 (2008). https://doi.org/10.1063/1.2895634ADSCrossRefGoogle Scholar
- 68.G. Gandolfo, Economic Dynamics (Springer, Berlin, 2009). http://www.springer.com/de/book/9783642038624CrossRefGoogle Scholar
- 69.M. Itoh, L.O. Chua, Memristor oscillators. Int. J. Bifurc. Chaos 18, 3183 (2008). https://doi.org/10.1142/S0218127408022354ADSMathSciNetCrossRefGoogle Scholar
- 70.S.O. Pearson, H.S.G. Anson, The neon tube as a means of producing intermittent currents. Proc. Phys. Soc. Lond. 34, 204 (1921). https://doi.org/10.1088/1478-7814/34/1/341ADSCrossRefGoogle Scholar
- 71.G.B. Clayton, Operational Amplifiers (Elsevier, 2013). https://www.elsevier.com/books/operational-amplifiers/clayton/978-0-7506-5914-7
- 72.D.P. Rosin, D. Rontani, D.J. Gauthier, Synchronizationof coupled Boolean phase oscillators. Phys. Rev. E 89, 042907 (2014). https://doi.org/10.1103/PhysRevE.89.042907
- 73.P.D. Mininni, D.O. Gómez, G.B. Mindlin, Stochastic relaxation oscillator model for the solar cycle. Phys. Rev. Lett. 85, 5476 (2000). https://doi.org/10.1103/PhysRevLett.85.5476ADSCrossRefGoogle Scholar
- 74.E. Massaro, A. Ardito, P. Ricciardi, F. Massa, T. Mineo, A. D’Aì, Non-linear oscillator models for the X-ray bursting of the microquasar GRS 1915+105. Astrophys. Space Sci. 352, 699 (2014). https://doi.org/10.1007/s10509-014-1924-9ADSCrossRefGoogle Scholar
- 75.J.P. Cox, Pulsating stars. Rep. Prog. Phys. 37, 563 (1974). https://doi.org/10.1088/0034-4885/37/5/001ADSCrossRefGoogle Scholar
- 76.O. Gingerich, A brief history of our view of the universe. Publ. Astron. Soc. Pac. 111, 254 (1999). https://doi.org/10.1086/316324ADSCrossRefGoogle Scholar
- 77.J.D. Murray, Mathematical Biology: I. An Introduction (Springer, Berlin, 2002). https://www.springer.com/de/book/9780387952239
- 78.A. Jenkins, Self-oscillation. Phys. Rep. 525, 167 (2013). https://doi.org/10.1016/j.physrep.2012.10.007ADSMathSciNetCrossRefGoogle Scholar
- 79.S.H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (Westview, 2014). https://westviewpress.com/books/nonlinear-dynamics-and-chaos/
- 80.B. van der Pol, On “relaxation-oscillations”. Philos. Mag. 2, 978 (1926). https://doi.org/10.1080/14786442608564127CrossRefGoogle Scholar
- 81.J.-M. Ginoux, C. Letellier, Van der Pol and the history of relaxation oscillations: toward the emergence of a concept. Chaos 22, 023120 (2012). https://doi.org/10.1063/1.3670008MathSciNetCrossRefGoogle Scholar
- 82.Y. Adam, et al., All-optical electrophysiology reveals brain-state dependent changes in hippocampal subthreshold dynamics and excitability. BioRxiv 281618 (2018). https://doi.org/10.1101/281618
- 83.D.R. Hochbaum, et al., All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat. Meth. 11, 825 (2014). https://doi.org/10.1038/nmeth.3000CrossRefGoogle Scholar
- 84.K. Deisseroth, Optogenetics: 10 years of microbial opsins in neuroscience. Nat. Neurosci. 18, 1213 (2015). https://doi.org/10.1038/nn.4091CrossRefGoogle Scholar
- 85.H.M. McNamara, H. Zhang, C.A. Werley, A.E. Cohen, Optically controlled oscillators in an engineered bioelectric tissue. Phys. Rev. X 6, 031001 (2016). https://doi.org/10.1103/PhysRevX.6.031001
- 86.A.N. Zaikin, A.M. Zhabotinsky, Concentration wave propagation in two-dimensional liquid-phase self-oscillating system. Nature 225, 535 (1970). https://doi.org/10.1038/225535b0ADSCrossRefGoogle Scholar
- 87.I.R. Epstein, J.A. Pojman, An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos: Oscillations, Waves, Patterns, and Chaos (Oxford University, Oxford, 1998). https://global.oup.com/academic/product/an-introduction-to-nonlinear-chemical-dynamics-9780195096705?cc=de&lang=en&
- 88.R.H. Clayton, E.A. Zhuchkova, A.V. Panfilov, Phase singularities and filaments: Simplifying complexity in computational models of ventricular fibrillation. Prog. Biophys. Mol. Biol. 90, 378 (2006). https://doi.org/10.1016/j.pbiomolbio.2005.06.011CrossRefGoogle Scholar
- 89.A. Karma, Physics of cardiac arrhythmogenesis. Annu. Rev. Condens. Matter Phys. 4, 313 (2013). https://doi.org/10.1146/annurev-conmatphys-020911-125112ADSCrossRefGoogle Scholar
- 90.A.T. Winfree, Electrical turbulence in three-dimensional heart muscle. Science 266, 1003 (1994). https://doi.org/10.1126/science.7973648ADSCrossRefGoogle Scholar
- 91.N. Joshi, Solitons, in “Encyclopedia of Nonlinear Science” (Taylor and Francis Group, 2006). https://www.crcpress.com/Encyclopedia-of-Nonlinear-Science/Scott/p/book/9781138012141
- 92.C. Koch, Biophysics of Computation: Information Processing in Single Neurons (Oxford University, Oxford, 2005). http://www.oupcanada.com/catalog/9780195181999.html
- 93.A.S. Mikhailov, Foundations of Synergetics I: Distributed Active Systems (Springer, Berlin, 1990). https://doi.org/10.1007/978-3-642-78556-6CrossRefGoogle Scholar
- 94.I. Franović, O.E. Omel’chenko, M. Wolfrum, Phase-sensitive excitability of a limit cycle. Chaos 28, 071105 (2018). https://doi.org/10.1063/1.5045179MathSciNetCrossRefGoogle Scholar
- 95.Y. Kuramoto, Reduction method sapplied to non-locally coupled oscillator systems. in “Nonlinear Dynamics” and Chaos: Where Do We Gofrom Here? (CRC, 2002), pp. 209–227. https://doi.org/10.1201/9781420033830.ch9Google Scholar