Advertisement

Introduction

  • Jan Frederik TotzEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The second law of thermodynamics [1] states, that during an irreversible process the total entropy S in an isolated system always grows \(\frac{d_i S}{d t} > 0\). As time passes, matter will decay from an ordered, but improbable state to a disordered and more probable state. Yet structures of high order, namely life forms, exist and very successfully so: From the microscopic bacterium Pelagibacter ubique [2] that measures just about 5\(\,\upmu {\text {m}}\) but makes up for the largest cumulated species biomass worldwide to the orders of magnitude larger blue whale (Balaenoptera musculus) reaching about 30\({\,\text {m}}\) in size [3]. Life prevails despite inhospitable environments that are devoid of oxygen [4], below freezing at −20\(\,^{\circ }\mathrm{C}\) [5] or close to boiling temperatures [6], to just give a few examples.

References

  1. 1.
    R. Clausius, Ueber verschiedenefür die Anwendung bequeme Formen der Hauptgleichungen dermechanischen Wärmetheorie. Ann. Phys. 201, 353 (1865).  https://doi.org/10.1002/andp.18652010702ADSCrossRefGoogle Scholar
  2. 2.
    M.S. Rappé, S.A. Connon, K.L. Vergin, S.J. Giovannoni, Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418, 630 (2002).  https://doi.org/10.1038/nature00917ADSCrossRefGoogle Scholar
  3. 3.
    B. Würsig, W. Perrin, B. Würsig, J. Thewissen (eds.), Encyclopedia of Marine Mammals (Academic, New York, 2008). https://www.elsevier.com/books/encyclopedia-of-marine-mammals/wursig/978-0-12-373553-9
  4. 4.
    R. Danovaro, A. Dell’Anno, A. Pusceddu, C. Gambi, I. Heiner, R.M. Kristensen, The first metazoa living in permanently anoxic conditions. BMC Biol. 8, 30 (2010).  https://doi.org/10.1186/1741-7007-8-30CrossRefGoogle Scholar
  5. 5.
    A. Clarke, G.J. Morris, F. Fonseca, B.J. Murray, E. Acton, H.C. Price, A low temperature limit for life on earth. PLOS ONE 8, e66207 (2013).  https://doi.org/10.1371/journal.pone.0066207ADSCrossRefGoogle Scholar
  6. 6.
    G. Fiala, K.O. Stetter, Pyrococcus furiosus sp.nov. represents a novel genus of marine heterotrophic archaebacteria growingoptimally at 100 \(^\circ \)C. Arch. Microbiol. 145, 56 (1986).  https://doi.org/10.1007/BF00413027
  7. 7.
    E. Schrödinger, What Is Life? The Physical Aspect of the Living Cell (Cambridge University, Cambridge, 1944). http://www.cambridge.org/catalogue/catalogue.asp?isbn=0521427088
  8. 8.
    J.D. Watson, F.H.C. Crick, Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171, 737 (1953).  https://doi.org/10.1038/171737a0ADSCrossRefGoogle Scholar
  9. 9.
    P. Glansdorff, I. Prigogine, Thermodynamic Theory of Structure, Stability and Fluctuations (Wiley, New York, 1971). https://books.google.de/books/about/Thermodynamic_Theory_of_Structure_Stabil.html?id=vf9QAAAAMAAJ&redir_esc=y
  10. 10.
    I. Prigogine, Time, structure, and fluctuations. Science 201, 777 (1978).  https://doi.org/10.1126/science.201.4358.777ADSCrossRefGoogle Scholar
  11. 11.
    A.M. Turing, The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B 237, 37 (1952).  https://doi.org/10.1098/rstb.1952.0012
  12. 12.
    A.T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biol. 16, 15 (1967).  https://doi.org/10.1016/0022-5193(67)90051-3CrossRefGoogle Scholar
  13. 13.
    T.H. Maiman, Stimulated optical radiation in ruby. Nature 187, 493 (1960).  https://doi.org/10.1038/187493a0ADSCrossRefGoogle Scholar
  14. 14.
    H. Haken, H. Sauermann, Nonlinear interaction of laser modes. Z. Physik 173, 261 (1963).  https://doi.org/10.1007/BF01377828
  15. 15.
    H. Haken, Synergetics: Introduction and Advanced Topics (Springer, Berlin, 2004).  https://doi.org/10.1007/978-3-662-10184-1CrossRefGoogle Scholar
  16. 16.
    W. Ebeling, Strukturbildung bei Irreversiblen Prozessen. Eine Einführung in die Theorie dissipativer Strukturen (Teubner, 1976). https://books.google.de/books/about/Strukturbildung_bei_irreversiblen_Prozes.html?id=Zt1vnQEACAAJ&redir_esc=y
  17. 17.
    G. Ertl, Reactions at surfaces: from atoms to complexity (Nobel Lecture). Angew. Chem., Int. Ed. 47, 3524 (2008).  https://doi.org/10.1002/anie.200800480CrossRefGoogle Scholar
  18. 18.
    W.A. Zehring, D.A. Wheeler, P. Reddy, R.J. Konopka, C.P. Kyriacou, M. Rosbash, J.C. Hall, P-elementtransformation with period locus DNA restores rhythmicity to mutant, arrhythmic drosophila melanogaster. Cell 39, 369 (1984).  https://doi.org/10.1016/0092-8674(84)90015-1CrossRefGoogle Scholar
  19. 19.
    L.B. Vosshall, J.L. Price, A. Sehgal, L. Saez, M.W. Young, Block in nuclear localization of period protein by a second clock mutation, timeless. Science 263, 1606 (1994).  https://doi.org/10.1126/science.8128247ADSCrossRefGoogle Scholar
  20. 20.
    J.L. England, Statistical physics of self-replication. J. Chem. Phys. 139, 121923 (2013).  https://doi.org/10.1063/1.4818538ADSCrossRefGoogle Scholar
  21. 21.
    J.L. England, Dissipative adaptation in driven self-assembly. Nat. Nanotechnol. 10, 919 (2015).  https://doi.org/10.1038/nnano.2015.250ADSCrossRefGoogle Scholar
  22. 22.
    J.M. Horowitz, J.L. England, Spontaneous fine-tuning to environment in many-species chemical reaction networks. Proc. Natl. Acad. Sci. U.S.A. 114, 7565 (2017).  https://doi.org/10.1073/pnas.1700617114ADSCrossRefGoogle Scholar
  23. 23.
    Y.S. Kim, R. Tamate, A.M. Akimoto, R. Yoshida, Recent developments in self-oscillating polymeric systems as smart materials: from polymers to bulk hydrogels. Mater. Horiz. 4, 38 (2017).  https://doi.org/10.1039/C6MH00435KCrossRefGoogle Scholar
  24. 24.
    M. Wehner, R.L. Truby, D.J. Fitzgerald, B. Mosadegh, G.M. Whitesides, J.A. Lewis, R.J. Wood, An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536, 451 (2016).  https://doi.org/10.1038/nature19100ADSCrossRefGoogle Scholar
  25. 25.
    H. Ke, M.R. Tinsley, A. Steele, F. Wang, K. Showalter, Link weight evolution in a network of coupled chemical oscillators. Phys. Rev. E 89, 052712 (2014).  https://doi.org/10.1103/PhysRevE.89.052712
  26. 26.
    P.A. Merolla, et al., A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345, 668 (2014).  https://doi.org/10.1126/science.1254642ADSCrossRefGoogle Scholar
  27. 27.
    X. Lu, L. Ren, Q. Gao, Y. Zhao, S. Wang, J. Yang, I.R. Epstein, Photophobic and phototropic movement of a self-oscillating gel. Chem. Commun. 49, 7690 (2013).  https://doi.org/10.1039/c3cc44480eCrossRefGoogle Scholar
  28. 28.
    J.C. Nawroth, H. Lee, A.W. Feinberg, C.M. Ripplinger, M.L. McCain, A. Grosberg, J.O. Dabiri, K.K. Parker, A tissue-engineered jellyfish with biomimetic propulsion. Nat. Biotechnol. 30, 792 (2012).  https://doi.org/10.1038/nbt.2269CrossRefGoogle Scholar
  29. 29.
    S.-J. Park, et al., Phototactic guidance of a tissue-engineered soft-robotic ray. Science 353, 158 (2016).  https://doi.org/10.1126/science.aaf4292ADSCrossRefGoogle Scholar
  30. 30.
    T. Patino, R. Mestre, S. Sánchez, Miniaturized softbio-hybrid robotics: a step forward into healthcare applications. Lab Chip 16, 3626 (2016).  https://doi.org/10.1039/C6LC90088GCrossRefGoogle Scholar
  31. 31.
    M.S. Lundberg, J.T. Baldwin, D.B. Buxton, Building a bioartificial heart: obstacles and opportunities. J. Thorac. Cardiovasc. Surg. 153, 748 (2017).  https://doi.org/10.1016/j.jtcvs.2016.10.103CrossRefGoogle Scholar
  32. 32.
    H. Helmholtz, On the Sensations of Tone (Dover Publications, New York, 2009).  https://doi.org/10.1017/CBO9780511701801
  33. 33.
    E.R. Kandel, J.H. Schwartz, T.M. Jessell, S.A. Siegelbaum, A.J. Hudspeth (eds.), Principles of Neural Science (McGraw-Hill, USA, 2012). http://www.principlesofneuralscience.com/
  34. 34.
    A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500 (1952).  https://doi.org/10.1113/jphysiol.1952.sp004764CrossRefGoogle Scholar
  35. 35.
    A.A. Berryman, The orgins and evolution of predator-prey theory. Ecology 73, 1530 (1992).  https://doi.org/10.2307/1940005CrossRefGoogle Scholar
  36. 36.
    M.B. Elowitz, S. Leibler, A synthetic oscillatory network of transcriptional regulators. Nature 403, 335 (2000).  https://doi.org/10.1038/35002125ADSCrossRefGoogle Scholar
  37. 37.
    E. Hamilton, N. Bruot, P. Cicuta, The chimera state in colloidal phase oscillators with hydrodynamic interaction. Chaos 27, 123108 (2017).  https://doi.org/10.1063/1.4989466CrossRefGoogle Scholar
  38. 38.
    J. Keener, J. Sneyd, Mathematical Physiology: I: Cellular Physiology (Springer, Berlin, 2009). http://www.springer.com/de/book/9780387758466
  39. 39.
    A. Goldbeter, Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of Periodic and Chaotic Behaviour (Cambridge University, Cambridge, 1996).  https://doi.org/10.1017/CBO9780511608193
  40. 40.
    A.T. Winfree, The Geometry of Biological Time (Springer, Berlin, 2001).  https://doi.org/10.1007/978-1-4757-3484-3CrossRefGoogle Scholar
  41. 41.
    R.M. Noyes, A simple explanation of the salt water oscillator. J. Chem. Edu. 66, 207 (1989).  https://doi.org/10.1021/ed066p207ADSCrossRefGoogle Scholar
  42. 42.
    T.S. Briggs, W.C. Rauscher, An oscillating iodine clock. J. Chem. Edu. 50, 496 (1973).  https://doi.org/10.1021/ed050p496ADSCrossRefGoogle Scholar
  43. 43.
    W.C. Bray, A peridic reaction in homogeneous solution and its relation to catalysis. J. Am. Chem. Soc. 43, 1262 (1921). http://pubs.acs.org/doi/abs/10.1021/ja01439a007CrossRefGoogle Scholar
  44. 44.
    I.R. Epstein, K. Kustin, P.D. Kepper, M. Orbán, Oscillating chemical reactions. Sci. Am. 248, 112 (1983).  https://doi.org/10.1038/scientificamerican0383-112CrossRefGoogle Scholar
  45. 45.
    I.Z. Kiss, Y. Zhai, J.L. Hudson, Predicting mutual entrainment of oscillators with experiment-based phase models. Phys. Rev. Lett. 94, 248301 (2005).  https://doi.org/10.1103/PhysRevLett.94.248301
  46. 46.
    N. Srinivas, J. Parkin, G. Seelig, E. Winfree, D. Soloveichik, Enzyme-free nucleicacid dynamical systems. Science 358, eaal2052 (2017).  https://doi.org/10.1126/science.aal2052CrossRefGoogle Scholar
  47. 47.
    S.-W. Lin, J. Keizer, P.A. Rock, H. Stenschke, On the mechanism of oscillations in the “Beating Mercury Heart”. Proc. Natl. Acad. Sci. U.S.A. 71, 4477 (1974).  https://doi.org/10.1073/pnas.71.11.4477ADSCrossRefGoogle Scholar
  48. 48.
    V.I. Nekorkin, Introduction to Nonlinear Oscillations (Wiley, New York, 2016). https://onlinelibrary.wiley.com/doi/book/10.1002/9783527695942
  49. 49.
    A.A. Andronov, A.A. Vitt, S.E. Khaikin, Theory of Oscillators (Elsevier, 1966). https://doi.org/10.1016/C2013-0-06631-5
  50. 50.
    M. Sargent, M.O. Scully, W.E. Lamb, Laser Physics (Westview, 1974). https://www.crcpress.com/Laser-Physics/Sargent-Sargent-Scully-Lamb/p/book/9780201069037
  51. 51.
    N. Calander, T. Claeson, S. Rudner, A subharmonic Josephson relaxation oscillator—amplification and locking. Appl. Phys. Lett. 39, 504 (1981).  https://doi.org/10.1063/1.92782ADSCrossRefGoogle Scholar
  52. 52.
    M. P. Païdoussis, Fluid-Structure Interactions: Cross-Flow-Induced Instabilities (Cambridge University, Cambridge, 2014). https://www.cambridge.org/de/academic/subjects/engineering/thermal-fluids-engineering/fluid-structure-interactions-cross-flow-induced-instabilities?format=PB&isbn=9781107652958
  53. 53.
    N.H. Fletcher, The non linear physics of musical instruments. Rep. Prog. Phys. 62, 723 (1999).  https://doi.org/10.1088/0034-4885/62/5/202ADSCrossRefGoogle Scholar
  54. 54.
    B.H. Story, An overview of the physiology, physics and modeling of the sound source for vowels. Acoust. Sci. Technol. 23, 195 (2002).  https://doi.org/10.1250/ast.23.195ADSCrossRefGoogle Scholar
  55. 55.
    A. Wickens, Fundamentals of Rail Vehicle Dynamics (CRC, 2005). https://www.crcpress.com/Fundamentals-of-Rail-Vehicle-Dynamics/Wickens/p/book/9789026519468
  56. 56.
    P. Horowitz, W. Hill, The Art of Electronics (Cambridge University, Cambridge, 2015). https://www.cambridge.org/us/academic/subjects/physics/electronics-physicists/art-electronics-3rd-edition?format=HB
  57. 57.
    V.P. Zhuravlev, D.M. Klimov, Theory of the shimmy phenomenon. Mech. Solids 45, 324 (2010).  https://doi.org/10.3103/S0025654410030039ADSCrossRefGoogle Scholar
  58. 58.
    P. Landa, D. Vlasov, The geyser as a self-oscillatory system. Randomness or dynamical chaos? Proc. Inst. Mech. Eng. C 223, 1103 (2009).  https://doi.org/10.1243/09544062JMES1089Google Scholar
  59. 59.
    T. Putelat, J.R. Willis, J.H.P. Dawes, On the seismic cycle seen as a relaxation oscillation. Philos. Mag. 88, 3219 (2008).  https://doi.org/10.1080/14786430802216374ADSCrossRefGoogle Scholar
  60. 60.
    M. Schulz, A. Paul, A. Timmermann, Relaxation oscillators in concert: a framework for climate change at millennial time scales during the late Pleistocene. Geophys. Res. Lett. 29, 46 (2002).  https://doi.org/10.1029/2002GL016144CrossRefGoogle Scholar
  61. 61.
    M. Crucifix, Oscillators and relaxation phenomena in Pleistocene climate theory. Phil. Trans. R. Soc. A 370, 1140 (2012).  https://doi.org/10.1098/rsta.2011.0315ADSCrossRefGoogle Scholar
  62. 62.
    A.B. Pippard, The Physics of Vibration (Cambridge University, Cambridge, 1989). https://doi.org/10.1017/CBO9780511622908
  63. 63.
    H.R. Crane, What does the drinking bird know about jet lag? Phys. Teach. 27, 470 (1989).  https://doi.org/10.1119/1.2342832ADSCrossRefGoogle Scholar
  64. 64.
    J. Grasman, Asymptotic Methods for Relaxation Oscillations and Applications (Springer, Berlin, 1987). http://www.springer.com/de/book/9780387965130CrossRefGoogle Scholar
  65. 65.
    I. Finnie, R.L. Curl, Physics in a Toy Boat. Am. J. Phys. 31, 289 (1963).  https://doi.org/10.1119/1.1969435ADSCrossRefGoogle Scholar
  66. 66.
    P. Chagnonm, Animated displays V: Relaxation oscillators. Phys. Teach. 32, 432 (1994).  https://doi.org/10.1119/1.2344069ADSCrossRefGoogle Scholar
  67. 67.
    K. Balasubramanian, R.I. Sujith, Thermoacoustic instability in a Rijke tube: Non-normality and nonlinearity. Phys. Fluids 20, 044103 (2008).  https://doi.org/10.1063/1.2895634ADSCrossRefGoogle Scholar
  68. 68.
    G. Gandolfo, Economic Dynamics (Springer, Berlin, 2009). http://www.springer.com/de/book/9783642038624CrossRefGoogle Scholar
  69. 69.
    M. Itoh, L.O. Chua, Memristor oscillators. Int. J. Bifurc. Chaos 18, 3183 (2008).  https://doi.org/10.1142/S0218127408022354ADSMathSciNetCrossRefGoogle Scholar
  70. 70.
    S.O. Pearson, H.S.G. Anson, The neon tube as a means of producing intermittent currents. Proc. Phys. Soc. Lond. 34, 204 (1921).  https://doi.org/10.1088/1478-7814/34/1/341ADSCrossRefGoogle Scholar
  71. 71.
    G.B. Clayton, Operational Amplifiers (Elsevier, 2013). https://www.elsevier.com/books/operational-amplifiers/clayton/978-0-7506-5914-7
  72. 72.
    D.P. Rosin, D. Rontani, D.J. Gauthier, Synchronizationof coupled Boolean phase oscillators. Phys. Rev. E 89, 042907 (2014).  https://doi.org/10.1103/PhysRevE.89.042907
  73. 73.
    P.D. Mininni, D.O. Gómez, G.B. Mindlin, Stochastic relaxation oscillator model for the solar cycle. Phys. Rev. Lett. 85, 5476 (2000).  https://doi.org/10.1103/PhysRevLett.85.5476ADSCrossRefGoogle Scholar
  74. 74.
    E. Massaro, A. Ardito, P. Ricciardi, F. Massa, T. Mineo, A. D’Aì, Non-linear oscillator models for the X-ray bursting of the microquasar GRS 1915+105. Astrophys. Space Sci. 352, 699 (2014).  https://doi.org/10.1007/s10509-014-1924-9ADSCrossRefGoogle Scholar
  75. 75.
    J.P. Cox, Pulsating stars. Rep. Prog. Phys. 37, 563 (1974).  https://doi.org/10.1088/0034-4885/37/5/001ADSCrossRefGoogle Scholar
  76. 76.
    O. Gingerich, A brief history of our view of the universe. Publ. Astron. Soc. Pac. 111, 254 (1999).  https://doi.org/10.1086/316324ADSCrossRefGoogle Scholar
  77. 77.
    J.D. Murray, Mathematical Biology: I. An Introduction (Springer, Berlin, 2002). https://www.springer.com/de/book/9780387952239
  78. 78.
    A. Jenkins, Self-oscillation. Phys. Rep. 525, 167 (2013).  https://doi.org/10.1016/j.physrep.2012.10.007ADSMathSciNetCrossRefGoogle Scholar
  79. 79.
    S.H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (Westview, 2014). https://westviewpress.com/books/nonlinear-dynamics-and-chaos/
  80. 80.
    B. van der Pol, On “relaxation-oscillations”. Philos. Mag. 2, 978 (1926).  https://doi.org/10.1080/14786442608564127CrossRefGoogle Scholar
  81. 81.
    J.-M. Ginoux, C. Letellier, Van der Pol and the history of relaxation oscillations: toward the emergence of a concept. Chaos 22, 023120 (2012).  https://doi.org/10.1063/1.3670008MathSciNetCrossRefGoogle Scholar
  82. 82.
    Y. Adam, et al., All-optical electrophysiology reveals brain-state dependent changes in hippocampal subthreshold dynamics and excitability. BioRxiv 281618 (2018).  https://doi.org/10.1101/281618
  83. 83.
    D.R. Hochbaum, et al., All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat. Meth. 11, 825 (2014).  https://doi.org/10.1038/nmeth.3000CrossRefGoogle Scholar
  84. 84.
    K. Deisseroth, Optogenetics: 10 years of microbial opsins in neuroscience. Nat. Neurosci. 18, 1213 (2015).  https://doi.org/10.1038/nn.4091CrossRefGoogle Scholar
  85. 85.
    H.M. McNamara, H. Zhang, C.A. Werley, A.E. Cohen, Optically controlled oscillators in an engineered bioelectric tissue. Phys. Rev. X 6, 031001 (2016).  https://doi.org/10.1103/PhysRevX.6.031001
  86. 86.
    A.N. Zaikin, A.M. Zhabotinsky, Concentration wave propagation in two-dimensional liquid-phase self-oscillating system. Nature 225, 535 (1970).  https://doi.org/10.1038/225535b0ADSCrossRefGoogle Scholar
  87. 87.
    I.R. Epstein, J.A. Pojman, An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos: Oscillations, Waves, Patterns, and Chaos (Oxford University, Oxford, 1998). https://global.oup.com/academic/product/an-introduction-to-nonlinear-chemical-dynamics-9780195096705?cc=de&lang=en&
  88. 88.
    R.H. Clayton, E.A. Zhuchkova, A.V. Panfilov, Phase singularities and filaments: Simplifying complexity in computational models of ventricular fibrillation. Prog. Biophys. Mol. Biol. 90, 378 (2006).  https://doi.org/10.1016/j.pbiomolbio.2005.06.011CrossRefGoogle Scholar
  89. 89.
    A. Karma, Physics of cardiac arrhythmogenesis. Annu. Rev. Condens. Matter Phys. 4, 313 (2013).  https://doi.org/10.1146/annurev-conmatphys-020911-125112ADSCrossRefGoogle Scholar
  90. 90.
    A.T. Winfree, Electrical turbulence in three-dimensional heart muscle. Science 266, 1003 (1994).  https://doi.org/10.1126/science.7973648ADSCrossRefGoogle Scholar
  91. 91.
    N. Joshi, Solitons, in “Encyclopedia of Nonlinear Science” (Taylor and Francis Group, 2006). https://www.crcpress.com/Encyclopedia-of-Nonlinear-Science/Scott/p/book/9781138012141
  92. 92.
    C. Koch, Biophysics of Computation: Information Processing in Single Neurons (Oxford University, Oxford, 2005). http://www.oupcanada.com/catalog/9780195181999.html
  93. 93.
    A.S. Mikhailov, Foundations of Synergetics I: Distributed Active Systems (Springer, Berlin, 1990).  https://doi.org/10.1007/978-3-642-78556-6CrossRefGoogle Scholar
  94. 94.
    I. Franović, O.E. Omel’chenko, M. Wolfrum, Phase-sensitive excitability of a limit cycle. Chaos 28, 071105 (2018).  https://doi.org/10.1063/1.5045179MathSciNetCrossRefGoogle Scholar
  95. 95.
    Y. Kuramoto, Reduction method sapplied to non-locally coupled oscillator systems. in “Nonlinear Dynamics” and Chaos: Where Do We Gofrom Here? (CRC, 2002), pp. 209–227. https://doi.org/10.1201/9781420033830.ch9Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikTechnische Universität BerlinBerlinGermany

Personalised recommendations