Interaction Patterns for Arbitration of Movement in Cooperative Human-Machine Systems: One-Dimensional Arbitration and Beyond

  • Daniel López Hernández
  • Marcel C. A. Baltzer
  • Konrad Bielecki
  • Frank Flemisch
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 903)


Arbitration becomes necessary when two interacting actors have different goals. Movement is one of the most prominent examples for arbitration. Many situations when arbitration is necessary are repetitive problems. One way to design arbitration processes in a structured manner is to structure them as interaction patterns that considers the user’s perception of a situation. These internal target states of the user can be influenced by information exchanged between the automated system and the user through different modalities. As a one-dimensional example for this, a device for unplugging a USB stick from a computer was constructed. This device allows the human to interact with the computer via various modalities. A user interface (“pattern designer”) allows real time design of messages and parameters. Interaction patterns designed through this method can be used in other domains such as automated driving or drone flying.


Human machine cooperation Arbitration of movement Interaction patterns Interaction design 


  1. 1.
    Baltzer, M., Altendorf, E., Meier, S., Flemisch, F.: Mediating the interaction between human and automation during the arbitration processes in cooperative guidance and control of highly automated vehicles: basic concept and first study. In: Stanton, N., Landry, S., Bucchianico, G.D., Vallicelli, A. (Eds.) Advances in Human Aspects of Transportation Part I, pp. 439–450. AHFE Conference, Krakow (2014)Google Scholar
  2. 2.
    Kelsch, J., Flemisch, F.O., Löper, C., Schieben, A., Schindler, J.: Links oder rechts, schneller oder langsamer? Grundlegende Fragestellungen beim Cognitive Systems Engineering von hochautomatisierter Fahrzeugführung. In: 48. FAS Anthropotechnik: Cognitive Systems Engineering in der Fahrzeug- und Prozessführung, Braunschweig (2006)Google Scholar
  3. 3.
    Flemisch, F.O.: Pointillistische Analyse der visuellen und nicht- visuellen Interaktionsressourcen am Beispiel Pilot-Assistenzsystem. Dissertation, Universität der Bundeswehr München, Neubiberg (2000)Google Scholar
  4. 4.
    Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., Angel, S.: A Pattern Language: Towns, Buildings, Construction. Oxford University Press, Oxford (1977)Google Scholar
  5. 5.
    Lakoff, G.: Women, Fire and Dangerous Things. University of Chicago Press, Chicago (1987)CrossRefGoogle Scholar
  6. 6.
    Johnson, M.: The Body in the Mind: The Bodily Basis of Meaning, Imagination, and Reason. University of Chicago Press, Chicago (1987)Google Scholar
  7. 7.
    Baltzer, M., López, D., Flemisch, F.: Towards an interaction pattern language for human machine cooperation and cooperative movement. Cogn. Technol. Work (2018, accepted)Google Scholar
  8. 8.
    Hurtienne, J., Klockner, K., Diefenbach, S., Nass, C., Maier, A.: Designing with image schemas: resolving the tension between innovation, inclusion and intuitive use. Interact. Comput. 27, 235–255 (2015)CrossRefGoogle Scholar
  9. 9.
    Baltzer, M.C.A., Lassen, C., López, D., Flemisch, F.: Behaviour adaptation using interaction patterns with augmented reality elements. In: Schmorrow, D., Fidopiastis, C. (eds.) Augmented Cognition: Intelligent Technologies. LNCS. Springer, Cham (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Daniel López Hernández
    • 1
  • Marcel C. A. Baltzer
    • 1
  • Konrad Bielecki
    • 1
  • Frank Flemisch
    • 1
    • 2
  1. 1.Fraunhofer FKIEWachtbergGermany
  2. 2.Institute for Industrial Engineering and Ergonomics (IAW)RWTH AachenAachenGermany

Personalised recommendations