Full-Mission Human-in-the-Loop Experiments to Evaluate an Automatic Activity Determination System for Adaptive Automation

  • Fabian Honecker
  • Axel Schulte
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 903)


To support helicopter pilots, a task-centered workload-adaptive associate system has been developed. This article briefly describes the concept and concentrates on the implementation and experimental validation of an automated system to determine pilot activity and estimate mental workload.


Adaptive automation Dempster-Shafer theory Human mental state estimation Manned-unmanned teaming MUM-T 


  1. 1.
    Brand, Y., Schulte, A.: Design and evaluation of a workload-adaptive associate system for cockpit crews. In: Harris, D. (ed.) Engineering Psychology and Cognitive Ergonomics, pp. 3–18. Springer International Publishing, Cham (2018)CrossRefGoogle Scholar
  2. 2.
    Dempster, A.P.: The Dempster-Shafer calculus for statisticians. Int. J. Approx. Reason. 48(2), 365–377 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 38(2), 325–339 (1967)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Grootjen, M., et al.: Task-based interpretation of operator state information for adaptive support. Found. Augment. Cogn. section 2, 236–242 (2006)Google Scholar
  5. 5.
    Honecker, F. et al.: A Task-centered Approach for Workload-adaptive Pilot Associate Systems. In: Schwarz, M. and Harfmann, J. (eds.) In: Proceedings of the 32rd Conference of the European Association for Aviation Psychology, Cascais, Portugal (EAAP), Groningen, NL, pp. 485–507 (2017)Google Scholar
  6. 6.
    Honecker, F., Schulte, A.: Automated online determination of pilot activity under uncertainty by using evidential reasoning. In: Harris, D. (ed.) Engineering Psychology and Cognitive Ergonomics: Cognition and Design, pp. 231–250. Springer International Publishing, Cham (2017)CrossRefGoogle Scholar
  7. 7.
    Maiwald, F., Schulte, A.: Enhancing military helicopter pilot assistant systems through resource adaptive dialogue management. In: Vidulich, M.A. et al. (eds.) Advances in Aviation Psychology. Ashgate Studies in Human Factors and Flight Operations. Ashgate Publishing, Ltd., Farnham, England, pp. 177–196 (2014)Google Scholar
  8. 8.
    McCracken, J.H., Aldrich, T.B.: Analyses of selected LHX mission functions: implications for operator workload and system automation goals. U.S. Army Research Institute, Fort Rucker, AL (1984)CrossRefGoogle Scholar
  9. 9.
    Onken, R., Schulte, A.: System-ergonomic design of cognitive automation: dual-mode cognitive design of vehicle guidance and control work systems. Springer, Berlin Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Parasuraman, R., et al.: Theory And Design of Adaptive Automation in Aviation Systems. Naval Air Warfare Center, Aircraft Division, Warminster, PA (1992)Google Scholar
  11. 11.
    Scerbo, M.W.: Adaptive automation. In: Parasuraman, R., Rizzo, M. (eds.) Neuroergonomics. The Brain at Work. pp. 239–252 Oxford University Press, New York (2007)CrossRefGoogle Scholar
  12. 12.
    Schmitt, F., Schulte, A.: A scalable mixed-initiative planner for multi-vehicle missions. In: International Conference on Engineering Psychology and Cognitive Ergonomics at HCI-International, Las Vegas, Nevada, USA, 15–20 July 2018Google Scholar
  13. 13.
    Schulte, A. et al.: Human-system interaction analysis for military pilot activity and mental workload determination. In: IEEE International Conference on Systems, Man, and Cybernetics, SMC 2015, Kowloon Tong, Hong Kong, pp. 1375–1380 (2015)Google Scholar
  14. 14.
    Shafer, G.: A mathematical theory of evidence. Princeton University Press, Princeton and London (1976)zbMATHGoogle Scholar
  15. 15.
    Wickens, C.D.: Multiple resources and performance prediction. Theor. Issues Ergon. Sci. 3(2), 159–177 (2002)CrossRefGoogle Scholar
  16. 16.
    Young, M.S. et al.: State of science: mental workload in ergonomics. Ergonomics. 58(1), 1–17 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Flight Systems (IFS), Bundeswehr University MunichNeubibergGermany

Personalised recommendations