Lane Change Prediction Using an Echo State Network

  • Karoline Griesbach
  • Karl Heinz HoffmannEmail author
  • Matthias BeggiatoEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 903)


Lane change prediction can reduce accidents and increase the traffic flow. An Echo State Network is implemented for the prediction of left lane changes in an urban area. The Echo State Network has three input variables: turn signal, head rotation in y-direction and steering angle. The input variables were generated from a Naturalistic Driving study in the urban area of Chemnitz, Germany. A successful prediction for left mandatory and discretionary lane changes was realized.


Echo state network Lane change Predictions Naturalistic driving study 


  1. 1.
    Statistisches Bundesamt, Verkehr - Verkehrsunfälle. Wiesbaden (2016)Google Scholar
  2. 2.
    Laval, J.A., Daganzo, C.F.: Lane-changing in traffic streams. Transp. Res. Part B: Methodol. 40(3), 251–264 (2006)CrossRefGoogle Scholar
  3. 3.
    I-FAS, Carai-Studie [raw data files]. Technische Universität Chemnitz, Chemnitz (2013)Google Scholar
  4. 4.
    Zheng, J., Suzuki, K., Fujita, M.: Predicting driver’s lane-changing decisions using a neural network model. Simul. Model. Pract. Theory 42, 73–83 (2014)CrossRefGoogle Scholar
  5. 5.
    Beggiato, M., Krems, J.F.: Sequence analysis of glance patterns to predict lane changes on urban arterial roads. 6. Tagung Fahrerassistenzsysteme (2013)Google Scholar
  6. 6.
    Peng, J., Guo, Y., Fu, R., Yuan, W., Wang, C.: Multi-parameter prediction of drivers’ lane-changing behaviour with neural network model. Appl. Ergon. 50, 207–217 (2015)CrossRefGoogle Scholar
  7. 7.
    Henning, M.J., Georgeon, O., Krems, J.F.: The quality of behavioral and environmental indicators used to infer the intention to change lanes. In: Proceedings of the International Driving Symposium on Human Factors in Driver Assessment, Training, and Vehicle Design, pp. 231–237 (2007)Google Scholar
  8. 8.
    Schmidt, K., Beggiato, M., Hoffmann, K.H., Krems, J.F.: A mathematical model for predicting lane changes using the steering wheel angle. J. Saf. Res. 85–e1 (2014)Google Scholar
  9. 9.
    Leonhardt, V., Wanielik, G.: Recognition of lane change intentions fusing features of driving situation, driver behavior, and vehicle movement by means of neural networks. In: Advanced Microsystems for Automotive Applications 2017, pp. 59–69. Springer (2018)Google Scholar
  10. 10.
    Leonhardt, V., Pech, T., Wanielik, G.: Data fusion and assessment for maneuver prediction including driving situation and driver behavior. In: 19th International Conference on Information Fusion (FUSION), pp. 1702–1708 (2016)Google Scholar
  11. 11.
    Bocklisch, F., Bocklisch, S.F., Beggiato, M., Krems, J.F.: Adaptive fuzzy pattern classification for the online detection of driver lane change intention. Neurocomputing 262, 148–158 (2017)CrossRefGoogle Scholar
  12. 12.
    Li, G., Li, S.E., Liao, Y., Wang, W., Cheng, B., Chen, F.: Lane change maneuver recognition via vehicle state and driver operation signals - results from naturalistic driving data. In: IEEE Intelligent Vehicles Symposium (IV), pp. 865–870 (2015)Google Scholar
  13. 13.
    Streubel, T., Hoffmann, K.H.: Prediction of driver intended path at intersections. In: IEEE Intelligent Vehicles Symposium Proceedings, pp. 134–139 (2014)Google Scholar
  14. 14.
    Díaz-Álvarez, A., Clavijo, M., Jiménez, F., Talavera, E., Serradilla, F.: Modelling the human lane-change execution behaviour through multilayer perceptrons and convolutional neural networks. Transp. Res. Part F: Traffic Psychol. Behav. 56, 134–148 (2018)CrossRefGoogle Scholar
  15. 15.
    Jaeger, H.: The “echo state” approach to analysing and training recurrent neural networks- with an erratum note. Technical Report, vol. 148, no. 34. German National Research Center for Information Technology (GMD), Bonn, Germany (2001)Google Scholar
  16. 16.
    Lukoševičius, M.: A practical guide to applying echo state networks. Springer (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Chemnitz University of TechnologyChemnitzGermany

Personalised recommendations