Genetic Diversity and Domestication History in Pyrus

  • Gayle M. VolkEmail author
  • Amandine Cornille
Part of the Compendium of Plant Genomes book series (CPG)


The cultivated pear is a major fruit crop in Eurasia that underpins many local economies. However, its origin and domestication history, as well as the diversity of wild pears in natural ecosystems, are at the early stages of exploration. In this chapter, we provide an overview of the described diversity and genetic relationships among wild and cultivated Pyrus species. Non-discriminatory morphological characters, poor diagnostic genetic tools, and lack of access to samples scattered throughout worldwide genebank collections make it difficult to definitively elucidate relationships of pear species and more generally Pyrus diversification and domestication. High-throughput sequencing is providing advancements in our understanding of the domestication process of the pear, and of biogeography, taxonomy, and ecology of wild pears. This knowledge will be crucial for future breeding programs focused on improving quality and production traits.


Cultivated Differentiation Disease resistance Hybridization of pear Wild species 


  1. Asanidze Z, Akhalkatsi M, Gvritishvili M (2011) Comparative morphometric study and relationships between the Caucasian species of wild pear (Pyrus spp.) and local cultivars in Georgia. Flora 206:974–986CrossRefGoogle Scholar
  2. Asanidze Z, Akhalkatsi M, Henk AD, Richards CM, Volk GM (2014) Genetic relationships between wild progenitor pear (Pyrus L.) species and local cultivars native to Georgia, South Caucasus. Flora 209:504–512CrossRefGoogle Scholar
  3. Bao L, Chen K, Zhang D, Cao Y, Yamamoto Y, Teng Y (2007) Genetic diversity and similarity of pear (Pyrus L.) cultivars native to East Asia revealed by SSR (simple sequence repeat) markers. Genet Resour Crop Evol 54:959–971CrossRefGoogle Scholar
  4. Bao L, Chen K, Zhang D, Li X, Teng Y (2008) An assessment of genetic variability and relationships within Asian pears based on AFLP (amplified fragment length polymorphism) markers. Scient Hort 116:374–380CrossRefGoogle Scholar
  5. Beichman AC, Huerta-Sanchez E, Lohmueller KE (2018) Using genomic data to infer historic population dynamics of nonmodel organisms. Ann Rev Ecol Evol System 49.–62431
  6. Bell RL (1992) Additional East European Pyrus germplasm with resistance to pear psylla nymphal feeding. HortScience 27:412–413CrossRefGoogle Scholar
  7. Bell RL, Itai A (2011) Pyrus. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, temperate fruits. Springer, Berlin, pp 147–176CrossRefGoogle Scholar
  8. Chagné D, Crowhurst RN, Pindo M, Thrimawithana A, Deng C et al (2014) The draft genome sequence of European pear (Pyrus communis L. ‘Bartlett’). PLoS ONE 9(4):e92644CrossRefGoogle Scholar
  9. Challice JS, Westwood MN (1973) Numerical taxonomic studies of the genus Pyrus using both chemical and botanical characters. Bot J Linn Soc 67:121–148CrossRefGoogle Scholar
  10. Chang Y-J, Cao Y-F, Zhang J-M, Tian L-M, Dong X-G, Zhang Y, Qi D, X-s Zhang (2017) Study on chloroplast DNA diversity of cultivated and wild pears (Pyrus L.) in Northern China. Tree Genet Genomes 13:44. Scholar
  11. Csilléry K, Blum MG, Gaggiotti OE, François O (2010) Approximate Bayesian computation (ABC) in practice. Trends Ecol Evol 25(7):410–418CrossRefGoogle Scholar
  12. Ercisli S (2004) A short review of the fruit germplasm resources of Turkey. Genet Resour Crop Evol 51:419–435CrossRefGoogle Scholar
  13. Gutenkunst RN, Hernandez RD, Williamson SH, Bustamante CD (2010) Diffusion approximations for demographic inference: DaDi. Nature Preced hdl:10101/npre.2010.4594.1Google Scholar
  14. Iketani H, Yamamoto T, Katayama H, Uematsu C, Mase N, Sato Y (2010) Introgression between native and prehistorically naturalized (archaeophytic) wild pear (Pyrus spp.) populations in Northern Tohoku, Northeast Japan. Conserv Genet 11:115–126CrossRefGoogle Scholar
  15. Jiang Z, Tang F, Huang H, Hu H, Chen Q (2009) Assessment of genetic diversity of Chinese sand pear landraces (Pyrus pyrifolia Nakai) using simple sequence repeat markers. HortScience 44:619–626CrossRefGoogle Scholar
  16. Jiang S, Zheng X, Yu P, Yue X, Ahmed M, Cai D, Teng Y (2016) Primitive genepools of Asian pears and their complex hybrid origins inferred from fluorescent sequence-specific amplification polymorphism (SSAP) markers based on LTR retrotransposons. PLoS ONE 11(2):e0149192. Scholar
  17. Katayama H, Amo H, Wuyun T, Uematsu C, Iketani H (2016) Genetic structure and diversity of the wild Ussurian pear in East Asia. Breed Sci 66:90–99CrossRefGoogle Scholar
  18. Korotkova N, Parolly G, Khachatryan A, Ghulikyan L, Sargsyan H, Akopian J, Borsch T, Gruenstaeudl M (2018) Towards resolving the evolutionary history of Caucasian pear Pyrus, Rosaceae)—Phylogenetic relationships, divergence times and leaf trait evolution. J Systemat Evol 56:35–47CrossRefGoogle Scholar
  19. Kumar S, Kirk C, Wiedow C, Knaebel M, Brewer L (2017) Genotyping-by-sequencing of pear (Pyrus spp.) accessions unravels novel patterns of genetic diversity and selection footprints. Hort Res 4:17015CrossRefGoogle Scholar
  20. Liu J, Zheng X, Potter D, Hu C, Teng Y (2012) Genetic diversity and population structure of Pyrus calleryana (Rosaceae) in Zhejiang province, China. Biochem System Ecol 45:69–78CrossRefGoogle Scholar
  21. Liu J, Sun P, Zheng X, Potter D, Li K, Hu C, Teng Y (2013) Genetic structure and phylogeography of Pyrus pashia L. (Rosaceae) in Yunnan Province, China, revealed by chloroplast DNA analyses. Tree Genet Genomes 9:433–441CrossRefGoogle Scholar
  22. Liu Q, Song Y, Liu L, Zhang M, Sun J, Zhang S, Wu J (2015) Genetic diversity and population structure of pear (Pyrus spp.) collections revealed by a set of core genome-wide SSR markers. Tree Genet Genomes 11:128. Scholar
  23. Montanari S, Saeed M, Knäbel M, Kim YK, Troggio M, Malnoy M, Velasco R, Fontana P, Won KH, Durel C-E, Perchepied L, Schaffer R, Wiedow C, Bus V, Brewer L, Gardiner SE, Crowhurst RN, Chagné D (2013) Identification of Pyrus single nucleotide polymorphisms (SNPs) and evaluation for genetic mapping in European pear and interspecific hybrids. PLoS ONE 8(10):e77022CrossRefGoogle Scholar
  24. Nishio S, Takada N, Saito T, Yamamoto T, Iketana H (2016) Estimation of loss of genetic diversity in modern Japanese cultivars by comparison of diverse genetic resources in Asian pear (Pyrus spp.). BMC Genet 17:81. Scholar
  25. Paganová V (2003) Taxonomic reliability of leaf and fruit morphological characteristics of the Pyrus L. taxa in Slovakia. Hort Sci (Prague) 30:98–107CrossRefGoogle Scholar
  26. Reim S, Lochschmidt F, Proft A, Wolf H, Wolf H (2017) Species delimitation, genetic diversity and structure of the European indigenous wild pear (Pyrus pyraster) in Saxony, Germany. Genet Resour Crop Evol 64:1075–1085CrossRefGoogle Scholar
  27. Richards CM, Volk GM, Reilley AA, Henk AD, Lockwood DR, Reeves PA, Forsline PL (2009) Genetic diversity and population structure in Malus sieversii, a wild progenitor species of the domesticated apple. Tree Genet Genomes 5(2):339–347CrossRefGoogle Scholar
  28. Silva, GJ, Medeiros Souza T, Lía Barbieri R, Costa de Oliveira A (2014) Origin, domestication, and dispersing of pear (Pyrus spp.). Adv Agric 2014:541097Google Scholar
  29. Song Y, Fan L, Chen H, Zhang M, Ma Q, Zhang S, Wu J (2014) Identifying genetic diversity and a preliminary core collection of Pyrus pyrifolia cultivars by a genome-wide set of SSR markers. Scientia Hort 167:5–16CrossRefGoogle Scholar
  30. Teng Y, Yue X, Zheng X, Cai D (2015) Genetic clue to the origin of cultivated Asian pears inferred from cpDNA haplotypes. Acta Hort 1094:31–39CrossRefGoogle Scholar
  31. U.S. Department of Agriculture (2017) Germplasm Resources Information Network (GRIN-Global). GRIN Taxonomy. Accessed 7 Dec 2017
  32. van der Zwet T, Stankovic D, Cociu V (1983) Collecting Pyrus germplasm in Eastern Europe and its significance to the USDA pear breeding program. Acta Hortic 140:43–45CrossRefGoogle Scholar
  33. Volk GM, Richards CM, Henk AD, Reilley AA, Bassil NV, Postman JD (2006) Diversity of wild Pyrus communis based on microsatellite analyses. J Amer Soc Hort Sci 131:408–417CrossRefGoogle Scholar
  34. Volk GM, Henk AD, Richards CM, Bassil NV, Postman J (2019) Chloroplast sequence data differentiate Maleae, and specifically Pyrus, species in the USDA-ARS National Plant Germplasm System. Genet Resour Crop Evol 66(1):5–15CrossRefGoogle Scholar
  35. Wolko Ł, Bocianowski J, Antkowiak W, Słomski R (2015) Genetic diversity and population structure of wild pear (Pyrus pyraster (L.) Burgsd.) in Poland. Open Life Sci 10:19–29Google Scholar
  36. Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, Khan MA, Tao S, Korban SS, Wang H, Chen NJ, Nishio T, Xu X, Cong L, Qi K, Huang X, Wang Y, Zhao X, Wu J, Deng C, Gou C, Zhou W, Yin H, Qin G, Sha Y, Tao Y, Chen H, Yang Y, Song Y, Zhan D, Wang J, Li L, Dai M, Gu C, Wang Y, Shi D, Wang X, Zhang H, Zeng L, Zheng D, Wang C, Chen M, Wang G, Xie L, Sovero V, Sha S, Huang W, Zhang S, Zhang M, Sun J, Xu L, Li Y, Liu X, Li Q, Shen J, Wang J, Paull RE, Bennetzen JL, Wang J, Zhang S (2013) The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 23(2):396–408CrossRefGoogle Scholar
  37. Wu J, Wang Y, Xu J, Korban SS, Fei Z, Tao S, Ming R, Tai S, Khan MA, Postman JD, Gu C, Yin H, Zheng D, Qi K, Li Y, Wang R, Deng CH, Kumar S, Chagné D, Li X, Wu J, Huang X, Zhang H, Xie Z, Li X, Zhang M, Li Y, Yue Z, Fang X, Li J, Li L, Jin C, Qin M, Zhang J, Wu X, Ke Y, Wang J, Yang H, Zhang S (2018) Diversification and independent domestication of Asian and European pears. Genome Biol 19:77. Scholar
  38. Wuyun T, Amo H, Xu J, Ma T, Uematsu C, Katayama H (2015) Population structure of and conservation strategies for wild Pyrus ussuriensis Maxim. in China. PLoSOne 10(8):e013368. Scholar
  39. Xue L, Liu Q, Qin M, Zhang M, Wu X, Wu J (2017) Genetic variation and population structure of “Zangli” pear landraces in Tibet revealed by SSR markers. Tree Genet Genomes 13:26. Scholar
  40. Yu P, Jiang S, Wang X, Bai S, Teng Y (2016) Retrotransposon-based sequence-specific amplification polymorphism markers reveal that cultivated Pyrus ussuriensis originated from an interspecific hybridization. Eur J Hort Sci 81:264–272CrossRefGoogle Scholar
  41. Zheng X, Cai D, Potter D, Postman J, Liu J, Teng Y (2014) Phylogeny and evolutionary histories of Pyrus L. revealed by phylogenetic trees and networks based on data from multiple DNA sequences. Mol Phylogen Evol 80:54–65CrossRefGoogle Scholar
  42. Zohary D, Spiegel-Roy P (1975) Beginnings of fruit growing in the old world. Science 187(4174):319–327CrossRefGoogle Scholar
  43. Zong Y, Sun P, Liu J, Yue Z, Li K, Teng Y (2014a) Genetic diversity and population structure of seedling populations of Pyrus pashia. Plant Mol Biol Rep 32:644–651CrossRefGoogle Scholar
  44. Zong Y, Sun P, Liu J, Yue X, Niu Q, Teng Y (2014b) Chloroplast DNA-based genetic diversity and phylogeography of Pyrus betulaefolia (Rosaceae) in Northern China. Tree Genet Genomes 10:739–749CrossRefGoogle Scholar
  45. Zong Y, Sun P, Yue X, Niu Q, Teng Y (2017) Variation in microsatellite loci reveals a natural boundary of genetic differentiation among Pyrus betulaefolia populations in Northern China. J Am Soc Hort Sci 142:319–329CrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019

Authors and Affiliations

  1. 1.USDA-ARS National Laboratory for Genetic Resources PreservationFort CollinsUSA
  2. 2.Génétique Quantitative et Evolution—Le Moulon, INRAUniv. Paris-Sud, CNRS, AgroParisTech, Université Paris-SaclayGif-Sur-YvetteFrance

Personalised recommendations