Advertisement

Efficient PTAS for the Euclidean CVRP with Time Windows

  • Michael Khachay
  • Yuri Ogorodnikov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11179)

Abstract

The Capacitated Vehicle Routing Problem (CVRP) is the well-known combinatorial optimization problem having a wide range of practical applications in operations research. It is known that the problem is NP-hard and remains intractable even in the Euclidean plane. Although the problem is hardly approximable in the general case, some of its geometric settings can be approximated efficiently. Unlike other versions of CVRP, approximability of the Capacitated Vehicle Routing Problem with Time Windows (CVRPTW) by the algorithms with performance guarantees seems to be weakly studied so far. To the best of our knowledge, the recent Quasi-Polynomial Time Approximation Scheme (QPTAS) proposed by L. Song et al. appears to be the only one known result in this field. In this paper, we propose the first Efficient Polynomial Time Approximation Scheme (EPTAS) for CVRPTW extending the classic approach of M. Haimovich and A. Rinnooy Kan.

Keywords

Capacitated Vehicle Routing Problem Time windows Efficient Polynomial Time Approximation Scheme 

References

  1. 1.
    Aggarwal, C.C., Reddy, C.K.: Data Clustering: Algorithms and Applications. Chapman & Hall/CRC Data Mining and Knowledge Discovery Series. Chapman and Hall/CRC, Boca Raton (2013)CrossRefGoogle Scholar
  2. 2.
    Aloise, D., Deshpande, A., Hansen, P., Popat, P.: NP-hardness of Euclidean sum-of-squares clustering. Mach. Learn. 75(2), 245–248 (2009).  https://doi.org/10.1007/s10994-009-5103-0CrossRefzbMATHGoogle Scholar
  3. 3.
    Arora, S.: Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. J. ACM 45, 753–782 (1998)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Braekers, K., Ramaekers, K., van Nieuwenhuyse, I.: The vehicle routing problem: state of the art classification and review. Comput. Ind. Eng. 99, 300–313 (2016). http://www.sciencedirect.com/science/article/pii/S0360835215004775CrossRefGoogle Scholar
  5. 5.
    Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Manag. Sci. 6(1), 80–91 (1959)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Das, A., Mathieu, C.: A quasipolynomial time approximation scheme for Euclidean capacitated vehicle routing. Algorithmica 73, 115–142 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Expósito-Izquierdo, C., Rossi, A., Sevaux, M.: A two-level solution approach to solve the clustered capacitated vehicle routing problem. Comput. Ind. Eng. 91, 274–289 (2016). http://www.sciencedirect.com/science/article/pii/S0360835215004684CrossRefGoogle Scholar
  8. 8.
    Haimovich, M., Rinnooy Kan, A.H.G.: Bounds and heuristics for capacitated routing problems. Math. Oper. Res. 10(4), 527–542 (1985)MathSciNetCrossRefGoogle Scholar
  9. 9.
    van Hoorn, J.J.: A note on the worst case complexity for the capacitated vehicle routing problem. In: Research Memorandum, vol. 5. Faculteit der Economische Wetenschappen en Bedrijfskunde (2010)Google Scholar
  10. 10.
    Kel’manov, A.V., Pyatkin, A.V.: Complexity of certain problems of searching for subsets of vectors and cluster analysis. Comput. Math. Math. Phys. 49(11), 1966–1971 (2009).  https://doi.org/10.1134/S0965542509110128MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Khachai, M.Y., Dubinin, R.D.: Approximability of the vehicle routing problem in finite-dimensional Euclidean spaces. Proc. Steklov Inst. Math. 297(1), 117–128 (2017).  https://doi.org/10.1134/S0081543817050133MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Khachay, M., Dubinin, R.: PTAS for the Euclidean capacitated vehicle routing problem in \(R^d\). In: Kochetov, Y., Khachay, M., Beresnev, V., Nurminski, E., Pardalos, P. (eds.) DOOR 2016. LNCS, vol. 9869, pp. 193–205. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-44914-2_16CrossRefGoogle Scholar
  13. 13.
    Khachay, M., Zaytseva, H.: Polynomial time approximation scheme for single-depot Euclidean capacitated vehicle routing problem. In: Lu, Z., Kim, D., Wu, W., Li, W., Du, D.-Z. (eds.) COCOA 2015. LNCS, vol. 9486, pp. 178–190. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-26626-8_14CrossRefGoogle Scholar
  14. 14.
    Kumar, S., Panneerselvam, R.: A survey on the vehicle routing problem and its variants. Intell. Inf. Manag. 4, 66–74 (2012)Google Scholar
  15. 15.
    Song, L., Huang, H.: The Euclidean vehicle routing problem with multiple depots and time windows. In: Gao, X., Du, H., Han, M. (eds.) COCOA 2017. LNCS, vol. 10628, pp. 449–456. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-71147-8_31CrossRefGoogle Scholar
  16. 16.
    Song, L., Huang, H., Du, H.: Approximation schemes for Euclidean vehicle routing problems with time windows. J. Comb. Optim. 32(4), 1217–1231 (2016).  https://doi.org/10.1007/s10878-015-9931-5MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Toth, P., Vigo, D.: Vehicle Routing: Problems, Methods, and Applications, 2nd edn. MOS-SIAM Series on Optimization. SIAM (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Krasovsky Institute of Mathematics and MechanicsEkaterinburgRussia
  2. 2.Ural Federal UniversityEkaterinburgRussia
  3. 3.Omsk State Technical UniversityOmskRussia

Personalised recommendations