On Modification of an Asymptotically Optimal Algorithm for the Maximum Euclidean Traveling Salesman Problem

  • Edward Kh. Gimadi
  • Oxana Yu. Tsidulko
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11179)


The known asymptotically optimal algorithm for the Euclidean maximum Traveling Salesman Problem by Serdukov builds approximate solution for the problem around the maximum-weight perfect matching. In this paper we are going to discuss an asymptotically optimal algorithm for the Euclidean maximum TSP with running-time \(O(n^3)\), that uses a maximum weight cycle cover of the initial graph as a foundation for constructing the TSP solution. We also prove a number of structural results for the optima of some maximization problems in normed spaces, which follow from the algorithm.


Maximum Traveling Salesman Problem Metric space Euclidean space Normed space Cycle cover Asymptotically optimal algorithm 


  1. 1.
    Barvinok, A.I., Gimadi, E.Kh., Serdyukov, A.I.: The maximum TSP. In: Gutin, G., Punnen, A.P. (eds.) The Traveling Salesman Problem and Its Variations, pp. 585–608. Kluwer Academic Publishers, Dordrecht (2002)Google Scholar
  2. 2.
    Barvinok, A., Fekete, S.P., Johnson, D.S., Tamir, A., Woeginger, G.J., Woodroofe, R.: The geometric maximum traveling salesman problem. J. ACM 50(5), 641–664 (2003)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Baburin, A.E., Gimadi, E.Kh.: On the asymptotic optimality of an algorithm for solving the maximum m-PSP in a multidimensional Euclidean space. Proc. Steklov Inst. Math. 272(1), 1–13 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Gabow, H.N.: An efficient reduction technique for degree-restricted subgraph and bidirected network flow problems. In: Proceedings of the 15th Annual ACM Symposium on Theory of Computing, Boston, USA, 25–27 April 1983, pp. 448–456. ACM, New York (1983)Google Scholar
  5. 5.
    Gimadi, E.Kh.: A new version of the asymptotically optimal algorithm for solving the Euclidean maximum traveling salesman problem. In: Proceedings of the 12th Baykal International Conference 2001, Irkutsk, vol. 1, pp. 117–123 (2001). (in Russian)Google Scholar
  6. 6.
    Gimadi, E.Kh.: Asymptotically optimal algorithm for finding one and two edge-disjoint traveling salesman routes of maximal weight in Euclidean space. Proc. Steklov Inst. Math. 263(2), 56–67 (2008)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Gutin, G., Punnen, A.P. (eds.): The Traveling Salesman Problem and ITS Variations. Kluver Academic Publishers, Dordrecht/Boston/London (2002)zbMATHGoogle Scholar
  8. 8.
    Johnson, O., Liu, J.: A traveling salesman approach for predicting protein functions. Source Code Biol. Med. 1(3), 9–16 (2006)Google Scholar
  9. 9.
    Kaplan, H., Lewenstein, M., Shafrir, N., Sviridenko, M.: Approximation algorithms for asymmetric TSP by decomposing directed regular multigraphs. J. ACM 52(4), 602–626 (2005)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Lawler, E.L., Lenstra, J.K., Rinnoy Kan, A.H.G., Shmoys, D.B. (eds.): The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley, Chichester (1985)zbMATHGoogle Scholar
  11. 11.
    Ray, S.S., Bandyopadhyay, S., Pal, S.K.: Gene ordering in partitive clustering using microarray expressions. J. Biosci. 32(5), 1019–1025 (2007)CrossRefGoogle Scholar
  12. 12.
    Serdyukov, A.I.: An asymptotically optimal algorithm for the maximum traveling salesman problem in Euclidean space. Upravlyaemye sistemy, Novosibirsk, vol. 27, pp. 79–87 (1987). (in Russian)Google Scholar
  13. 13.
    Shenmaier, V.V.: Asymptotically optimal algorithms for geometric Max TSP and Max m-PSP. Discret. Appl. Math. 163(2), 214–219 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Sobolev Institute of Mathematics SB RASNovosibirskRussia
  2. 2.Department of Mechanics and MathematicsNovosibirsk State UniversityNovosibirskRussia

Personalised recommendations