CalciumCV: Computer Vision Software for Calcium Signaling in Astrocytes

  • Valentina Kustikova
  • Mikhail Krivonosov
  • Alexey Pimashkin
  • Pavel Denisov
  • Alexey Zaikin
  • Mikhail Ivanchenko
  • Iosif MeyerovEmail author
  • Alexey SemyanovEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11179)


Developing computational analysis of time-lapse imaging of calcium events in astrocytes is a challenging task in neuroscience. Here we report the implementation of an algorithm that solves this task. After noise reduction with the block-matching and 3D filtering (BM3D) algorithm, calcium activity is identified as fluorescence elevation above the baseline level. Individual events are detected by sliding window approach applied to the variation of pixel intensity relative to the baseline level. The maximal projection and duration of astrocytic calcium events are then assessed. The novelty of the proposed method is an adaptive construction of the baseline level. The statistical results generated by our program are consistent with the previous algorithm reported and used by us for the reference. The software is publicly available.


Bioinformatics Calcium signaling in astrocytes Computer vision Image analysis Statistical analysis 


  1. 1.
    Bennett, M.V., et al.: New roles for astrocytes: gap junction hemichannels have something to communicate. Trends Neurosci. 26(11), 610–617 (2003)CrossRefGoogle Scholar
  2. 2.
    Ma, B., et al.: Gap junction coupling confers isopotentiality on astrocyte syncytium. Glia 64(2), 214–226 (2016)CrossRefGoogle Scholar
  3. 3.
    Nett, W.J., et al.: Hippocampal astrocytes in situ exhibit calcium oscillations that occur independent of neuronal activity. J. Neurophysiol. 87(1), 528–537 (2002)CrossRefGoogle Scholar
  4. 4.
    Sun, M.Y., et al.: Astrocyte calcium microdomains are inhibited by Bafilomycin A1 and cannot be replicated by low-level Schaffer collateral stimulation in situ. Cell Calcium 55(1), 1–16 (2014)CrossRefGoogle Scholar
  5. 5.
    Fiacco, T.A., et al.: Intracellular astrocyte calcium waves in situ increase the frequency of spontaneous AMPA receptor currents in CA1 pyramidal neurons. J. Neurosci. 24(3), 722–732 (2004)CrossRefGoogle Scholar
  6. 6.
    Asada, A., et al.: Subtle modulation of ongoing calcium dynamics in astrocytic microdomains by sensory inputs. Physiol. Rep. 3(10), e12454 (2015). Scholar
  7. 7.
    Nakayama, R., et al.: Subcellular calcium dynamics during juvenile development in mouse hippocampal astrocytes. Eur. J. Neurosci. 43(7), 923–932 (2016)CrossRefGoogle Scholar
  8. 8.
    Shigetomi, E., et al.: Probing the complexities of astrocyte calcium signaling. Trends Cell Biol. 26(4), 300–312 (2016)CrossRefGoogle Scholar
  9. 9.
    Bindocci, E., et al.: Three-dimensional Ca\(^{2+}\) imaging advances understanding of astrocyte biology. Am. Assoc. Adv. Sci. 356(6339), eaai8185 (2017). Scholar
  10. 10.
    Krizhevsky, A., et al.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (NIPS 2012), vol. 25, pp. 1097–1105 (2012)Google Scholar
  11. 11.
    Szegedy, C., et al.: Going deeper with convolutions (2014).
  12. 12.
    Simonyan, K., et al.: Very deep convolutional networks for large-scale visual recognition (2014).
  13. 13.
    Redmon, J., et al.: You only look once: unified, real-time object detection (2016).
  14. 14.
    Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger (2016).
  15. 15.
    Liu, W., et al.: SSD: single shot multibox detector (2016). Scholar
  16. 16.
    Wu, Y.W., et al.: Spatiotemporal calcium dynamics in single astrocytes and its modulation by neuronal activity. Cell Calcium 55(2), 119–129 (2014)CrossRefGoogle Scholar
  17. 17.
    Dabov, K., et al.: Image denoising by sparse 3D transform domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ji, H., et al.: Robust video denoising using low rank matrix completion. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1791–1798 (2010)Google Scholar
  19. 19.
    Burges, C.J.C., et al.: Adaptive multi-column deep neural networks with application to robust image denoising. In: Advances in Neural Information Processing Systems (NIPS 2013), vol. 26, pp. 1493–1501 (2013)Google Scholar
  20. 20.
    Lefkimmiatis, S.: Non-local color image denoising with convolutional neural networks. In: IEEE International Conference on Computer Vision and Pattern Recognition (2017)Google Scholar
  21. 21.
    Lefkimmiatis, S.: Universal denoising networks: a novel CNN architecture for image denoising. In: IEEE International Conference on CVPR (2017)Google Scholar
  22. 22.
    Kao, J.P.Y., et al.: Photochemically generated cytosolic calcium pulses and their detection by fluo-3. J. Biol. Chem. 264(14), 8179–8184 (1989)Google Scholar
  23. 23.
    Ester, M., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD 1996), pp. 226–231 (1996)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Valentina Kustikova
    • 1
  • Mikhail Krivonosov
    • 1
  • Alexey Pimashkin
    • 1
  • Pavel Denisov
    • 1
  • Alexey Zaikin
    • 1
    • 2
  • Mikhail Ivanchenko
    • 1
  • Iosif Meyerov
    • 1
  • Alexey Semyanov
    • 1
    • 3
  1. 1.Lobachevsky State University of Nizhni NovgorodNizhni NovgorodRussian Federation
  2. 2.Department of Mathematics and Institute for Women’s HealthUniversity College LondonLondonUK
  3. 3.Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryMoscowRussian Federation

Personalised recommendations