A Digital Tool to Understand the Pictorial Procedures of 17\(^\mathrm{th}\) Century Realism

  • Francesca Di CiccoEmail author
  • Lisa Wiersma
  • Maarten Wijntjes
  • Joris Dik
  • Jeroen Stumpel
  • Sylvia Pont
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11130)


To unveil the mystery of the exquisitely rendered materials in Dutch 17th century paintings, we need to understand the pictorial procedures of this period. We focused on the Dutch master Jan de Heem, known for his highly convincing still-lifes. We reconstructed his systematic multi-layered approach to paint grapes, based on pigment distribution maps, layers stratigraphy, and a 17th century textual source. We digitised the layers reconstruction to access the temporal information of the painting procedure. We combined the layers via optical mixing into a digital tool that can be used to answer “what if” art historical questions about the painting composition, by editing the order, weight and colour of the layers.


Optical mixing Convincing rendering Painting reconstruction Jan de Heem 



This work is part of the research program NICAS “Recipes and Realities” with project number 628.007.005, which is partly financed by the Netherlands Organization for Scientific Research (NWO) and partly by Delft University of Technology. Maarten Wijntjes was financed by the VIDI project “Visual communication of material properties”, number 276.54.001.


  1. 1.
    Ferwerda, J.A.: Three varieties of realism in computer graphics. In: Proceedings of SPIE 5007, Human Vision and Electronic Imaging VIII (2003)Google Scholar
  2. 2.
    Houbraken, A.: De groote schouburgh der Nederlantsche konstschilders en schilderessen. B.M. Israel, Amsterdam (1976)Google Scholar
  3. 3.
    Wallert, A.: Still Lifes: Techniques and Style, An Examination of Paintings of the Rijksmuseum. Rijksmuseum, Waanders, Amsterdam (1999)Google Scholar
  4. 4.
    Wallert, A.: De Groote Waereld in ’t Kleen Geschildert (the big world painted small): a Dutch 17th century treatise on oil painting technique. In: The Artist’s Process: Technology and Interpretation. Archetype, London (2012)Google Scholar
  5. 5.
    Beurs, W., Scholz, M.T.: The big world painted small. The Getty Research Institute, Los Angeles (in preparation)Google Scholar
  6. 6.
    Vandivere, A.: From the ground up. Surface and sub-surface effects in fifteenth- and sixteenth-century Netherlandish paintings. Ph.D. thesis, University of Amsterdam (2013)Google Scholar
  7. 7.
    Bol, M.: Oil and the translucent: varnishing and glazing in practice, recipes and historiography, 1100–1600. Ph.D. thesis, Utrecht University (2012)Google Scholar
  8. 8.
    Legrand, S., et al.: Examination of historical paintings by state-of-the-art hyperspectral imaging methods: from scanning infra-red spectroscopy to computed X-ray laminography. Heritage Sci. 2(1), 1–11 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Keyser, N.D., Snickt, G.V.D., Loon, A.V., Legrand, S., Wallert, A.: Jan Davidsz. de Heem (1606–1684): a technical examination of fruit and flower still lifes combining MA-XRF scanning, cross-section analysis and technical historical sources. Heritage Sci. 5(38), 1–13 (2017)Google Scholar
  10. 10.
    Pont, S., Koenderink, J., Doorn, A., Wijntjes, M., te Pas, S.: Mixing material modes. In: Proceedings of SPIE-IS&T Electronic Imaging, vol. 8291, p. 82910D (2012)Google Scholar
  11. 11.
    Zhang, F., de Ridder, H., Fleming, R.W., Pont, S.: MatMix 1.0: using optical mixing to probe visual material perception. J. Vis. 16(6), 1–18 (2016)CrossRefGoogle Scholar
  12. 12.
    Favreau, J.D., Lafarge, F., Bousseau, A.: Photo2Clipart: image abstraction and vectorization using layered linear gradients. ACM Trans. Graph. 36(6), 1–11 (2017)CrossRefGoogle Scholar
  13. 13.
    Aksoy, Y., Aydin, T.O., Smolic, A., Pollefeys, M.: Unmixing-based soft color segmentation for image manipulation. ACM Trans. Graph. 36(2), 1–19 (2017)CrossRefGoogle Scholar
  14. 14.
    Porter, T., Duff, T.: Compositing digital images. ACM SIGGRAPH Comput. Grap. 18(3), 253–259 (1984)CrossRefGoogle Scholar
  15. 15.
    Tan, J., Lien, J.M., Gingold, Y.: Decomposing images into layers via RGB-space geometry. ACM Trans. Graph. 36(1), 1–14 (2016)CrossRefGoogle Scholar
  16. 16.
    Kubelka, P., Munk, F.: An article on optics of paint layers. Zeitschrift fr Technische Physik 12, 593–601 (1931)Google Scholar
  17. 17.
    Tan, J., Dvoronk, M., Skora, D., Gingold, Y.: Decomposing time-lapse paintings into layers. ACM Trans. Graph. 34(4), 1–10 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Francesca Di Cicco
    • 1
    Email author
  • Lisa Wiersma
    • 2
  • Maarten Wijntjes
    • 1
  • Joris Dik
    • 1
  • Jeroen Stumpel
    • 2
  • Sylvia Pont
    • 1
  1. 1.Delft University of TechnologyDelftThe Netherlands
  2. 2.Utrecht UniversityUtrechtThe Netherlands

Personalised recommendations