Advertisement

Communication Between Living and Non-living Systems: The Basis for Advanced Targeted Nanomedicine

  • Uche Chude-Okonkwo
  • Reza Malekian
  • B. T. Maharaj
Chapter
Part of the Nanomedicine and Nanotoxicology book series (NANOMED)

Abstract

Every system known to man can be categorised as either a living system or a non-living system. There are many features and factors which differentiate the categories. Living systems are distinguishable from non-living systems by their ability to maintain stable, ordered states far from thermodynamic equilibrium (PLoS ONE 6:e22085, 2011 [1]). For the living systems to maintain the ordered nonequilibrium states, they continuously exchange information/entropy with their environments, grow and reproduce. Examples of living systems include humans, animals, plants and cells. On the other hand, non-living systems, if isolated or placed in a uniform environment, usually cease all motion very quickly such that no macroscopically observable events occur, thereby maintaining permanent equilibrium. Examples include all inanimate objects.

References

  1. 1.
    Frieden BR, Gatenby RA (2011) Information dynamics in living systems: prokaryotes, eukaryotes, and cancer. PLoS ONE 6:e22085CrossRefGoogle Scholar
  2. 2.
    Polikanov YS, Blaha GM, Steitz TA (2012) How hibernation factors RMF, HPF, and YfiA turn off protein synthesis. Science 336:915–918CrossRefGoogle Scholar
  3. 3.
    Von Bodman SB, Willey JM, Diggle SP (2008) Cell-cell communication in bacteria: united we stand. J Bacteriol 190:4377–4391CrossRefGoogle Scholar
  4. 4.
    Ehrlich HP (2013) A snapshot of direct cell–cell communications in wound healing and scarring. Adv Wound Care 2:113–121CrossRefGoogle Scholar
  5. 5.
    Perbal B (2003) Communication is the key. Cell Commun Signal 1(3):3–7CrossRefGoogle Scholar
  6. 6.
    Persinger MA (2014) Infrasound, human health, and adaptation: an integrative overview of recondite hazards in a complex environment. Nat Hazards 70:501–525CrossRefGoogle Scholar
  7. 7.
    Carovac A, Smajlovic F, Junuzovic D (2011) Application of ultrasound in medicine. Acta Informatica Medica 19:168–171CrossRefGoogle Scholar
  8. 8.
    Novelline RA, Squire LF (2004) Squire’s fundamentals of radiology. La Editorial UPRGoogle Scholar
  9. 9.
    Sarvazyan AP, Urban MW, Greenleaf JF (2013) Acoustic waves in medical imaging and diagnostics. Ultrasound Med Biol 39:1133–1146CrossRefGoogle Scholar
  10. 10.
    Jiang W, Wright MW (2016) Indoor wireless communication using airborne ultrasound and OFDM methods. IEEE International Ultrasonics Symposium, pp 1–4Google Scholar
  11. 11.
    Davilis Y, Kalis A, Ifantis A (2010) On the use of ultrasonic waves as a communications medium in biosensor networks. IEEE Trans Inf Tech Biomed 14:650–656CrossRefGoogle Scholar
  12. 12.
    Zhou Q, Zheng J, Onishi S, Crommie M, Zettl AK (2015) Graphene electrostatic microphone and ultrasonic radio. Proc Natl Acad Sci 112:8942–8946CrossRefGoogle Scholar
  13. 13.
    Wang W, Liu J, Xie G, Wen L, Zhang J (2017) A bio-inspired electrocommunication system for small underwater robots. Bioinspiration Biomimetics 12:1–18Google Scholar
  14. 14.
    Goodwin FE (1970) A review of operational laser communication systems. Proc IEEE 58:1746–1752CrossRefGoogle Scholar
  15. 15.
    Palais JC (1988) Fiber optic communications. Prentice Hall, Englewood CliffsGoogle Scholar
  16. 16.
    Carruthers JB (2003) Wireless infrared communications. Wiley, New YorkGoogle Scholar
  17. 17.
    Kim JJ, Lee Y, Kim HG, Choi KJ, Kweon HS, Park S et al (2012) Biologically inspired LED lens from cuticular nanostructures of firefly lantern. Proc Natl Acad Sci 109:18674–18678CrossRefGoogle Scholar
  18. 18.
    Holland LZ (2016) Tunicates. Curr Biol 26:R146–R152CrossRefGoogle Scholar
  19. 19.
    Valiadi M, Iglesias-Rodriguez MD (2014) Diversity of the luciferin binding protein gene in bioluminescent dinoflagellates: insights from a new gene in Noctiluca scintillans and sequences from Gonyaulacoid genera. J Eukaryot Microbiol 61:134–145CrossRefGoogle Scholar
  20. 20.
    Counsilman J, Ong P (1988) Responses of the luminescent land snail Dyakia (Quantula) striata to natural and artificial lights. J Ethol 6:1–8CrossRefGoogle Scholar
  21. 21.
    Weinstein P, Delean S, Wood T, Austin AD (2016) Bioluminescence in the ghost fungus Omphalotus nidiformis does not attract potential spore dispersing insects. IMA Fungus 7:229–234CrossRefGoogle Scholar
  22. 22.
    Manu M (2015) Bioluminescence–biological laser phenomenon initiated by eye Biophotonic tests. Acta Ophthalmologica 93:1Google Scholar
  23. 23.
    Bansal R (2004) Near-field magnetic communication. IEEE Antennas Propag Mag 46:114–115CrossRefGoogle Scholar
  24. 24.
    Nune SK, Gunda P, Thallapally PK, Lin YY, Laird Forrest M, Berkland CJ (2009) Nanoparticles for biomedical imaging. Expert Opin Drug Deliv 6:1175–1194CrossRefGoogle Scholar
  25. 25.
    Graham LM, Nguyen TM, Lee SB (2011) Nanodetoxification: emerging role of nanomaterials in drug intoxication treatment. Nanomedicine 6:921–928CrossRefGoogle Scholar
  26. 26.
    Sensenig R, Sapir Y, MacDonald C, Cohen S, Polyak B (2012) Magnetic nanoparticle-based approaches to locally target therapy and enhance tissue regeneration in vivo. Nanomedicine 7:1425–1442CrossRefGoogle Scholar
  27. 27.
    Chude-Okonkwo UA, Malekian R, Maharaj BT, Vasilakos AV (2017) Molecular communication and nanonetwork for targeted drug delivery: A survey. IEEE Commun Surv Tutorials 19:3046–3096CrossRefGoogle Scholar
  28. 28.
    Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD et al (1995) Molecular biology of the cell. Trends Biochem Sci 20:210CrossRefGoogle Scholar
  29. 29.
    Hirokawa N (1998) Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279:519–526CrossRefGoogle Scholar
  30. 30.
    Gosselin MC, Vermeeren G, Kuhn S, Kellerman V, Benkler S, Uusitupa TM et al (2011) Estimation formulas for the specific absorption rate in humans exposed to base-station antennas. IEEE Trans Electromagnetic Compatibility 53:909–922CrossRefGoogle Scholar
  31. 31.
    IEEE P1906.1—Recommended practice for nanoscale and molecular communication frameworkGoogle Scholar
  32. 32.
    Kaissling KE (2014) Pheromone reception in insects: the example of silk moths. In: Mucignat-Caretta C (ed) Neurobiology of chemical communication. CRC Press/Taylor & Francis, Boca Raton, FL, pp 99–146CrossRefGoogle Scholar
  33. 33.
    Bigiani A, Mucignat-Caretta C, Montani G, Tirindelli R (2005) Pheromone reception in mammals. Reviews of Physiology. Biochemistry and Pharmacology, Springer, New York, pp 1–35Google Scholar
  34. 34.
    Kirman JH (1973) Tactile communication of speech: a review and an analysis. Psychol Bull 80:54CrossRefGoogle Scholar
  35. 35.
    Coye C, Ouattara K, Zuberbühler K, Lemasson A (2015) Suffixation influences receivers’ behaviour in non-human primates. Proc R Soc B 282:20150265CrossRefGoogle Scholar
  36. 36.
    Yorzinski JL, Patricelli GL, Bykau S, Platt ML (2017) Selective attention in peacocks during assessment of rival males. J Exp Biol 220:1146–1153CrossRefGoogle Scholar
  37. 37.
    Ueda H, Kikuta Y, Matsuda K (2012) Plant communication: mediated by individual or blended VOCs? Plant Signal Behav 7:222–226CrossRefGoogle Scholar
  38. 38.
    Vickers CE, Gershenzon J, Lerdau MT, Loreto F (2009) A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat Chem Biol 5:283CrossRefGoogle Scholar
  39. 39.
    Witzany G (2006) Plant communication from biosemiotic perspective: differences in abiotic and biotic signal perception determine content arrangement of response behavior. Context determines meaning of meta-, inter- and intraorganismic plant signaling. Plant Signal Behav 1:169–178CrossRefGoogle Scholar
  40. 40.
    Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol 38:651–664CrossRefGoogle Scholar
  41. 41.
    Babikova Z, Gilbert L, Bruce TJ, Birkett M, Caulfield JC, Woodcock C et al (2013) Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack. Ecol Lett 16:835–843CrossRefGoogle Scholar
  42. 42.
    Perrimon N, Pitsouli C, Shilo BZ (2012) Signaling mechanisms controlling cell fate and embryonic patterning. Cold Spring Harb Perspect Biol 4(a005975):1–19Google Scholar
  43. 43.
    Kennedy L, Hodges K, Meng F, Alpini G, Francis H (2012) Histamine and histamine receptor regulation of gastrointestinal cancers. Transl Gastrointest Cancer 1:215Google Scholar
  44. 44.
    Veldhuis JD, Johnson ML (1988) A novel general biophysical model for simulating episodic endocrine gland signaling. Am J Phys–Endocrinol Metab 255:E749–E759CrossRefGoogle Scholar
  45. 45.
    Kleine B, Rossmanith WG (2016) Hormones and the endocrine system: Textbook of endocrinology. Springer, New YorkCrossRefGoogle Scholar
  46. 46.
    Lovinger DM (2008) Communication networks in the brain: neurons, receptors, neurotransmitters, and alcohol. Alcohol Res HealthGoogle Scholar
  47. 47.
    Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Ann Rev Microbiol 55:165–199CrossRefGoogle Scholar
  48. 48.
    Erez Z, Steinberger-Levy I, Shamir M, Doron S, Stokar-Avihail A, Peleg Y et al (2017) Communication between viruses guides lysis–lysogeny decisions. Nature 541:488CrossRefGoogle Scholar
  49. 49.
    Tarkka MT, Sarniguet A, Frey-Klett P (2009) Inter-kingdom encounters: recent advances in molecular bacterium–fungus interactions. Curr Genet 55:233–243CrossRefGoogle Scholar
  50. 50.
    Christensen SA, Kolomiets MV (2011) The lipid language of plant–fungal interactions. Fungal Genet Biol 48:4–14CrossRefGoogle Scholar
  51. 51.
    Vavrinsky E, Telek P, Donoval M, Sladek L, Daricek M, Horinek F et al (2012) Sensor system for wireless bio-signal monitoring. Proced Chem 6:155–164CrossRefGoogle Scholar
  52. 52.
    Alam MM, Hamida EB (2014) Surveying wearable human assistive technology for life and safety critical applications: standards, challenges and opportunities. Sensors 14:9153–9209CrossRefGoogle Scholar
  53. 53.
    Jovanov E, Milenkovic A (2011) Body area networks for ubiquitous healthcare applications: opportunities and challenges. J Med Syst 35:1245–1254CrossRefGoogle Scholar
  54. 54.
    Gravina R, Alinia P, Ghasemzadeh H, Fortino G (2017) Multi-sensor fusion in body sensor networks: state-of-the-art and research challenges. Inf Fusion 35:68–80CrossRefGoogle Scholar
  55. 55.
    Arbia DB, Alam MM, Moullec YL, Hamida EB (2017) Communication challenges in on-body and body-to-body wearable wireless networks: A connectivity perspective. Technologies 5:43CrossRefGoogle Scholar
  56. 56.
    Seyedi M, Kibret B, Lai DT, Faulkner M (2013) A survey on intrabody communications for body area network applications. IEEE Trans Biomed Eng 60:2067–2079CrossRefGoogle Scholar
  57. 57.
    King BJ, Gilmore-Bykovskyi AL, Roiland RA, Polnaszek BE, Bowers BJ, Kind AJ (2013) The consequences of poor communication during transitions from hospital to skilled nursing facility: a qualitative study. J Am Geriatr Soc 61:1095–1102CrossRefGoogle Scholar
  58. 58.
    Tang D, Wang Y (2013) Cell cycle regulation of Golgi membrane dynamics. Trends Cell Biol 23:296–304CrossRefGoogle Scholar
  59. 59.
    Garden GA, La Spada AR (2012) Intercellular (mis) communication in neurodegenerative disease. Neuron 73:886–901CrossRefGoogle Scholar
  60. 60.
    Benninger RK, Piston DW (2014) Cellular communication and heterogeneity in pancreatic islet insulin secretion dynamics. Trends Endocrinol Metab 25:399–406CrossRefGoogle Scholar
  61. 61.
    Gómez-Suaga P, Bravo-San Pedro JM, González-Polo RA, Fuentes JM, Niso-Santano M (2018) ER–mitochondria signaling in Parkinson’s disease. Cell Death Dis 9:337CrossRefGoogle Scholar
  62. 62.
    Oktay MH, Lee YF, Harney A, Farrell D, Kuhn NZ, Morris SA et al (2015) Cell-to-cell communication in cancer: workshop report. NPJ Breast Cancer 1(15022):1–4Google Scholar
  63. 63.
    Humbert S, Saudou F (2005) Huntington’s disease: intracellular signaling pathways and neuronal death. J Soc Biol 199:247–251CrossRefGoogle Scholar
  64. 64.
    An J, Teoh JEM, Suntornnond R, Chua CK (2015) Design and 3D printing of scaffolds and tissues. Engineering 1:261–268CrossRefGoogle Scholar
  65. 65.
    Understanding chemotherapy: a guide for patients and families (2014) American Cancer Society, Atlanta, GAGoogle Scholar
  66. 66.
    Tinkle S, McNeil SE, Mühlebach S, Bawa R, Borchard G, Barenholz YC et al (2014) Nanomedicines: addressing the scientific and regulatory gap. Ann New York Acad Sci 1313:35–56CrossRefGoogle Scholar
  67. 67.
    Freitas RA (2006) Pharmacytes: An ideal vehicle for targeted drug delivery. J Nanosci Nanotechnol 6:2769–2775CrossRefGoogle Scholar
  68. 68.
    Kim SS, Rait A, Rubab F, Rao AK, Kiritsy MC, Pirollo KF et al (2014) The clinical potential of targeted nanomedicine: delivering to cancer stem-like cells. Mol Ther 22:278–291CrossRefGoogle Scholar
  69. 69.
    Debbage P (2009) Targeted drugs and nanomedicine: present and future. Curr Pharm Des 15:153–172CrossRefGoogle Scholar
  70. 70.
    Alex SM, Sharma CP (2013) Nanomedicine for gene therapy. Drug Deliv Transl Res 3:437–445CrossRefGoogle Scholar
  71. 71.
    Leijten J, Rouwkema J, Zhang YS, Nasajpour A, Dokmeci MR, Khademhosseini A (2016) Advancing tissue engineering: a tale of nano-, micro-, and macroscale integration. Small 12:2130–2145CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Uche Chude-Okonkwo
    • 1
  • Reza Malekian
    • 1
  • B. T. Maharaj
    • 1
  1. 1.Department of Electrical, Electronic and Computer EngineeringUniversity of PretoriaHatfield, PretoriaSouth Africa

Personalised recommendations