Discovering Groups of Signals in In-Vehicle Network Traces for Redundancy Detection and Functional Grouping

  • Artur MrowcaEmail author
  • Barbara Moser
  • Stephan Günnemann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11053)


Modern vehicles exchange signals across multiple ECUs in order to run various functionalities. With increasing functional complexity the amount of distinct signals grew too large to be analyzed manually. During development of a car only subsets of such signals are relevant per analysis and functional group. Moreover, historical growth led to redundancies in signal specifications which need to be discovered. Both tasks can be solved through the discovery of groups. While the analysis of in-vehicle signals is increasingly studied, the grouping of relevant signals as a basis for those tasks was examined less. We therefore present and extensively evaluate a processing and clustering approach for semi-automated grouping of in-vehicle signals based on traces recorded from fleets of cars.


In-vehicle Clustering Signal Redundancy detection 


  1. 1.
    Crossman, J., Guo, H., Murphey, Y., Cardillo, J.: Automotive signal fault diagnostics. I. Signal fault analysis, signal segmentation, feature extraction and quasi-optimal feature selection. IEEE Trans. Veh. Technol. 52(4), 1063–1075 (2003). Scholar
  2. 2.
    Guo, H., Crossman, J., Murphey, Y., Coleman, M.: Automotive signal diagnostics using wavelets and machine learning. IEEE Trans. Veh. Technol. 49(5), 1650–1662 (2000). Scholar
  3. 3.
    Hadoop, A.: Hadoop (2009)Google Scholar
  4. 4.
    Kim, K., Parlos, A.: Induction motor fault diagnosis based on neuropredictors and wavelet signal processing. IEEE/ASME Trans. Mechatron. 7(2), 201–219 (2002). Scholar
  5. 5.
    Lin, J., Keogh, E., Lonardi, S., Chiu, B.: A symbolic representation of time series, with implications for streaming algorithms. In: Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery - DMKD 2003. ACM Press (2003).
  6. 6.
    Möller-Levet, C.S., Klawonn, F., Cho, K.-H., Wolkenhauer, O.: Fuzzy clustering of short time-series and unevenly distributed sampling points. In: R. Berthold, M., Lenz, H.-J., Bradley, E., Kruse, R., Borgelt, C. (eds.) IDA 2003. LNCS, vol. 2810, pp. 330–340. Springer, Heidelberg (2003). Scholar
  7. 7.
    Mrowca, A., Pramsohler, T., Steinhorst, S., Baumgarten, U.: Automated interpretation and reduction of in-vehicle network traces at a large scale. In: Proceedings of the 55th Annual Design Automation Conference - DAC 2018. ACM Press (2018).
  8. 8.
    Murphey, Y.L., Masrur, M., Chen, Z., Zhang, B.: Model-based fault diagnosis in electric drives using machine learning. IEEE/ASME Trans. Mechatron. 11(3), 290–303 (2006). Scholar
  9. 9.
    Nanopoulos, A., Alcock, R., Manolopoulos, Y.: Feature-based classification of time-series data. Int. J. Comput. Res. 10(3), 49–61 (2001)Google Scholar
  10. 10.
    Niennattrakul, V., Ratanamahatana, C.A.: On clustering multimedia time series data using k-means and dynamic time warping. In: 2007 International Conference on Multimedia and Ubiquitous Engineering (MUE 07). IEEE (2007).
  11. 11.
    Nowaczyk, S., Prytz, R., Byttner, S.: Ideas for fault detection using relation discovery. In: The 27th Annual Workshop of the Swedish Artificial Intelligence Society (SAIS), 14–15 May 2012, Örebro, Sweden, no. 071, pp. 1–6, Linköping University Electronic Press (2012)Google Scholar
  12. 12.
    Prytz, R., Nowaczyk, S., Byttner, S.: Towards relation discovery for diagnostics. In: Proceedings of the First International Workshop on Data Mining for Service and Maintenance - KDD4Service 2011. ACM Press (2011).
  13. 13.
    Prytz, R., Nowaczyk, S., Rgnvaldsson, T., Byttner, S.: Predicting the need for vehicle compressor repairs using maintenance records and logged vehicle data. Eng. Appl. Artif. Intell. 41, 139–150 (2015). Scholar
  14. 14.
    Raptis, I.A., et al.: A particle filtering-based framework for real-time fault diagnosis of autonomous vehicles. In: Annual Conference of the Prognostics and Health Management Society (2013)Google Scholar
  15. 15.
    Taylor, P., Griffths, N., Bhalerao, A., Popham, T., Zhou, X., Dunoyer, A.: Redundant feature selection for telemetry data. In: Cao, L., Zeng, Y., Symeonidis, A.L., Gorodetsky, V., Müller, J.P., Yu, P.S. (eds.) ADMI 2013. LNCS (LNAI), vol. 8316, pp. 53–65. Springer, Heidelberg (2014). Scholar
  16. 16.
    Voronov, S., Jung, D., Frisk, E.: Heavy-duty truck battery failure prognostics using random survival forests. IFAC-PapersOnLine 49(11), 562–569 (2016). Scholar
  17. 17.
    Wang, X., Smith, K.A., Hyndman, R.J.: Dimension reduction for clustering time series using global characteristics. In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2005. LNCS, vol. 3516, pp. 792–795. Springer, Heidelberg (2005). Scholar
  18. 18.
    Zheng, H., Zhang, H., Meng, H., Wang, X.: Qualitative modeling of vehicle behavior for scenario parsing. In: 2006 IEEE Intelligent Transportation Systems Conference. IEEE (2006).

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Artur Mrowca
    • 1
    • 2
    Email author
  • Barbara Moser
    • 1
  • Stephan Günnemann
    • 2
  1. 1.Bayerische Motoren Werke AGMunichGermany
  2. 2.Technical University of MunichGarchingGermany

Personalised recommendations