Advertisement

RAPID: Real-time Analytics Platform for Interactive Data Mining

  • Kwan Hui LimEmail author
  • Sachini Jayasekara
  • Shanika Karunasekera
  • Aaron Harwood
  • Lucia Falzon
  • John Dunn
  • Glenn Burgess
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11053)

Abstract

Twitter is a popular social networking site that generates a large volume and variety of tweets, thus a key challenge is to filter and track relevant tweets and identify the main topics discussed in real-time. For this purpose, we developed the Real-time Analytics Platform for Interactive Data mining (RAPID) system, which provides an effective data collection mechanism through query expansion, numerous analysis and visualization capabilities for understanding user interactions, tweeting behaviours, discussion topics, and other social patterns. Code related to this paper is available at: https://youtu.be/1APLeLT_t8w.

Keywords

Twitter Social networks Real-time Topic tracking 

Notes

Acknowledgments

This research is supported by Defence Science and Technology.

References

  1. 1.
    Falzon, L., McCurrie, C., Dunn, J.: Representation and analysis of Twitter activity: a dynamic network perspective. In: Proceedings of ASONAM 2017 (2017)Google Scholar
  2. 2.
    Kumar, S., Morstatter, F., Liu, H.: Twitter Data Analytics. Springer, New York (2013)Google Scholar
  3. 3.
    Lee, K., Agrawal, A., Choudhary, A.: Real-time disease surveillance using Twitter data: demonstration on flu and cancer. In: Proceedings of KDD 2013 (2013)Google Scholar
  4. 4.
    Li, R., Lei, K.H., Khadiwala, R., Chang, K.C.C.: TEDAS: a Twitter-based event detection and analysis system. In: Proceedings of ICDE 2012 (2012)Google Scholar
  5. 5.
    Liao, Y., et al.: Mining micro-blogs: opportunities and challenges. In: Abraham, A. (ed.) Computational Social Networks. Springer, London (2012).  https://doi.org/10.1007/978-1-4471-4054-2_6CrossRefGoogle Scholar
  6. 6.
    Marcus, A., Bernstein, M.S., Badar, O., Karger, D.R., Madden, S., Miller, R.C.: Tweets as data: demonstration of TweeQL and TwitInfo. In: SIGMOD 2011 (2011)Google Scholar
  7. 7.
    Mathioudakis, M., Koudas, N.: TwitterMonitor: trend detection over the Twitter stream. In: Proceedings of SIGMOD 2010, pp. 1155–1158 (2010)Google Scholar
  8. 8.
    O’Connor, B., Krieger, M., Ahn, D.: TweetMotif: exploratory search and topic summarization for Twitter. In: Proceedings of ICWSM 2010 (2010)Google Scholar
  9. 9.
    Vanni, M., Kase, S.E., Karunasekara, S., Falzon, L., Harwood, A.: RAPID: real-time analytics platform for interactive data-mining in a decision support scenario. In: Proceedings of SPIE, vol. 10207 (2017)Google Scholar
  10. 10.
    Wang, H., Can, D., Kazemzadeh, A., Bar, F., Narayanan, S.: A system for real-time twitter sentiment analysis of 2012 US presidential election cycle. In: Proceedings of ACL 2012, pp. 115–120 (2012)Google Scholar
  11. 11.
    Wang, J., Feng, Y., Naghizade, E., Rashidi, L., Lim, K.H., Lee, K.E.: Happiness is a choice: sentiment and activity-aware location recommendation. In: Proceedings of WWW 2018 Companion, pp. 1401–1405 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kwan Hui Lim
    • 1
    • 3
    Email author
  • Sachini Jayasekara
    • 1
  • Shanika Karunasekera
    • 1
  • Aaron Harwood
    • 1
  • Lucia Falzon
    • 2
  • John Dunn
    • 2
  • Glenn Burgess
    • 2
  1. 1.The University of MelbourneParkvilleAustralia
  2. 2.Defence Science and TechnologyEdinburghAustralia
  3. 3.Singapore University of Technology and DesignSingaporeSingapore

Personalised recommendations