Advertisement

Urban Sensing for Anomalous Event Detection:

Distinguishing Between Legitimate Traffic Changes and Abnormal Traffic Variability
  • Masoomeh ZameniEmail author
  • Mengyi He
  • Masud Moshtaghi
  • Zahra Ghafoori
  • Christopher Leckie
  • James C. Bezdek
  • Kotagiri Ramamohanarao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11053)

Abstract

Sensors deployed in different parts of a city continuously record traffic data, such as vehicle flows and pedestrian counts. We define an unexpected change in the traffic counts as an anomalous local event. Reliable discovery of such events is very important in real-world applications such as real-time crash detection or traffic congestion detection. One of the main challenges to detecting anomalous local events is to distinguish them from legitimate global traffic changes, which happen due to seasonal effects, weather and holidays. Existing anomaly detection techniques often raise many false alarms for these legitimate traffic changes, making such techniques less reliable. To address this issue, we introduce an unsupervised anomaly detection system that represents relationships between different locations in a city. Our method uses training data to estimate the traffic count at each sensor location given the traffic counts at the other locations. The estimation error is then used to calculate the anomaly score at any given time and location in the network. We test our method on two real traffic datasets collected in the city of Melbourne, Australia, for detecting anomalous local events. Empirical results show the greater robustness of our method to legitimate global changes in traffic count than four benchmark anomaly detection methods examined in this paper. Data related to this paper are available at: https://vicroadsopendata-vicroadsmaps.opendata.arcgis.com/datasets/147696bb47544a209e0a5e79e165d1b0_0.

Keywords

Pedestrian event detection Vehicle traffic event detection Anomaly detection Urban sensing Smart cities 

References

  1. 1.
  2. 2.
    City of Melbourne pedestrian counting system. http://www.pedestrian.melbourne.vic.gov.au/ (2015)
  3. 3.
    Baras, K., Moreira, A.: Anomaly detection in university campus WiFi zones. In: 8th IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM), pp. 202–207 (2010)Google Scholar
  4. 4.
    Dani, M.-C., Jollois, F.-X., Nadif, M., Freixo, C.: Adaptive threshold for anomaly detection using time series segmentation. In: International Conference on Neural Information Processing, pp. 82–89 (2015)CrossRefGoogle Scholar
  5. 5.
    Doan, M.T., Rajasegarar, S., Leckie, C.: Profiling pedestrian activity patterns in a dynamic urban environment. In: 4th International Workshop on Urban Computing (UrbComp) (2015)Google Scholar
  6. 6.
    Doan, M.T., Rajasegarar, S., Salehi, M., Moshtaghi, M., Leckie, C.: Profiling pedestrian distribution and anomaly detection in a dynamic environment. In: CIKM, pp. 1827–1830 (2015)Google Scholar
  7. 7.
    Erfani, S.M., Rajasegarar, S., Karunasekera, S., Leckie, C.: High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning. Pattern Recogn. 58, 121–134 (2016)CrossRefGoogle Scholar
  8. 8.
    Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD vol. 34, pp. 226–231 (1996)Google Scholar
  9. 9.
    Frias-Martinez, V., Stolfo, S.J., Keromytis, A.D.: Behavior-profile clustering for false alert reduction in anomaly detection sensors. In: Annual Computer Security Applications Conference (ACSAC), pp. 367–376 (2008)Google Scholar
  10. 10.
    Garcia-Font, V., Garrigues, C., Rifà-Pous, H.: A comparative study of anomaly detection techniques for smart city wireless sensor networks. Sensors 16(6), 868 (2016)CrossRefGoogle Scholar
  11. 11.
    Ghafoori, Z., Erfani, S.M., Rajasegarar, S., Bezdek, J.C., Karunasekera, S., Leckie, C.: Efficient unsupervised parameter estimation for one-class support vector machines. IEEE Trans. Neural Netw. Learn. Syst. (2018)Google Scholar
  12. 12.
    Jeong, S.Y., Koh, Y.S., Dobbie, G.: Phishing detection on Twitter streams. In: Cao, H., Li, J., Wang, R. (eds.) PAKDD 2016. LNCS (LNAI), vol. 9794, pp. 141–153. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-42996-0_12CrossRefGoogle Scholar
  13. 13.
    Li, X., Li, Z., Han, J., Lee, J.-G.: Temporal outlier detection in vehicle traffic data. In: IEEE 25th International Conference on Data Engineering (ICDE), pp. 1319–1322 (2009)Google Scholar
  14. 14.
    Limthong, K.: Real-time computer network anomaly detection using machine learning techniques. J. Adv. Comput. Netw. 1(1), 1–5 (2013)Google Scholar
  15. 15.
    Nidhal, A. Ngah, U.K., Ismail, W.: Real time traffic congestion detection system. In: 5th International Conference on Intelligent and Advanced Systems (ICIAS), pp. 1–5 (2014)Google Scholar
  16. 16.
    Pukelsheim, F.: The three sigma rule. Am. Stat. 48(2), 88–91 (1994)MathSciNetGoogle Scholar
  17. 17.
    Rajasegarar, S., Bezdek, J.C., Moshtaghi, M., Leckie, C., Havens, T.C., Palaniswami, M.: Measures for clustering and anomaly detection in sets of higher dimensional ellipsoids. In: International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2012)Google Scholar
  18. 18.
    Rajasegarar, S., et al.: Ellipsoidal neighbourhood outlier factor for distributed anomaly detection in resource constrained networks. Pattern Recogn. 47(9), 2867–2879 (2014)CrossRefGoogle Scholar
  19. 19.
    Reddy, R.R., Ramadevi, Y., Sunitha, K.: Enhanced anomaly detection using ensemble support vector machine. In: ICBDAC, pp. 107–111 (2017)Google Scholar
  20. 20.
    Shi, Y., Deng, M., Yang, X., Gong, J.: Detecting anomalies in spatio-temporal flow data by constructing dynamic neighbourhoods. Comput. Environ. Urban Syst. 67, 80–96 (2018)CrossRefGoogle Scholar
  21. 21.
    Tu, J., Duan, Y.: Detecting congestion and detour of taxi trip via GPS data. In: IEEE Second International Conference on Data Science in Cyberspace (DSC), pp. 615–618 (2017)Google Scholar
  22. 22.
    Tukey, J.W.: Exploratory Data Analysis (1977)Google Scholar
  23. 23.
    Witayangkurn, A., Horanont, T., Sekimoto, Y., Shibasaki, R.: Anomalous event detection on large-scale GPS data from mobile phones using Hidden Markov Model and cloud platform. In: Proceedings of the ACM Conference on Pervasive and Ubiquitous Computing Adjunct Publication, pp. 1219–1228 (2013)Google Scholar
  24. 24.
    Zhou, Z., Meerkamp, P., Volinsky, C.: Quantifying urban traffic anomalies. arXiv preprint arXiv:1610.00579 (2016)

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Masoomeh Zameni
    • 1
    Email author
  • Mengyi He
    • 2
  • Masud Moshtaghi
    • 3
  • Zahra Ghafoori
    • 1
  • Christopher Leckie
    • 1
  • James C. Bezdek
    • 1
  • Kotagiri Ramamohanarao
    • 1
  1. 1.The University of MelbourneMelbourneAustralia
  2. 2.Kepler AnalyticsMelbourneAustralia
  3. 3.AmazonManhattan BeachUSA

Personalised recommendations