Automating Layout Synthesis with Constructive Preference Elicitation

  • Luca Erculiani
  • Paolo Dragone
  • Stefano TesoEmail author
  • Andrea Passerini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11053)


Layout synthesis refers to the problem of arranging objects subject to design preferences and structural constraints. Applications include furniture arrangement, space partitioning (e.g. subdividing a house into rooms), urban planning, and other design tasks. Computer-aided support systems are essential tools for architects and designers to produce custom, functional layouts. Existing systems, however, do not learn the designer’s preferences, and therefore fail to generalize across sessions or instances. We propose addressing layout synthesis by casting it as a constructive preference elicitation task. Our solution employs a coactive interaction protocol, whereby the system and the designer interact by mutually improving each other’s proposals. The system iteratively recommends layouts to the user, and learns the user’s preferences by observing her improvements to the recommendations. We apply our system to two design tasks, furniture arrangement and space partitioning, and report promising quantitative and qualitative results on both. Code related to this paper is available at:


Constructive learning Preference elicitation Layout synthesis Furniture arrangement Space partitioning 



This work has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement No. [694980] SYNTH: Synthesising Inductive Data Models).


  1. 1.
    Akase, R., Okada, Y.: Automatic 3D furniture layout based on interactive evolutionary computation. In: CISIS, pp. 726–731. IEEE (2013)Google Scholar
  2. 2.
    Akase, R., Okada, Y.: Web-based multiuser 3D room layout system using interactive evolutionary computation with conjoint analysis. In: VINCI, p. 178. ACM (2014)Google Scholar
  3. 3.
    Alexander, C.: A Pattern Language: Towns, Buildings, Construction. Oxford University Press, Oxford (1977)Google Scholar
  4. 4.
    Bakir, G.H., Hofmann, T., Schölkopf, B., Smola, A.J., Taskar, B., Vishwanathan, S.V.N.: Predicting Structured Data. MIT Press, Cambridge (2007)CrossRefGoogle Scholar
  5. 5.
    Boyd, S., Kim, S.J., Vandenberghe, L., Hassibi, A.: A tutorial on geometric programming. Optim. Eng. 8(1), 67 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Dragone, P., Teso, S., Kumar, M., Passerini, A.: Decomposition strategies for constructive preference elicitation. In: AAAI (2018)Google Scholar
  7. 7.
    Dragone, P., Teso, S., Passerini, A.: Constructive preference elicitation. Front. Robot. AI 4, 71 (2017)CrossRefGoogle Scholar
  8. 8.
    Fisher, M., Ritchie, D., Savva, M., Funkhouser, T., Hanrahan, P.: Example-based synthesis of 3D object arrangements. ACM TOG 31(6), 135 (2012)CrossRefGoogle Scholar
  9. 9.
    Galdzicki, M., et al.: The Synthetic Biology Open Language (SBOL) provides a community standard for communicating designs in synthetic biology. Nature Biotechnol. 32(6), 545 (2014)CrossRefGoogle Scholar
  10. 10.
    Harada, M., Witkin, A., Baraff, D.: Interactive physically-based manipulation of discrete/continuous models. In: SIGGRAPH, pp. 199–208. ACM (1995)Google Scholar
  11. 11.
    Liu, T., Chaudhuri, S., Kim, V.G., Huang, Q., Mitra, N.J., Funkhouser, T.: Creating consistent scene graphs using a probabilistic grammar. ACM Trans. Graph. (TOG) 33(6), 211 (2014)zbMATHGoogle Scholar
  12. 12.
    Masters, G.M., Ela, W.P.: Introduction to Environmental Engineering and Science, vol. 3. Prentice Hall, Upper Saddle River (1991)Google Scholar
  13. 13.
    Merrell, P., Schkufza, E., Li, Z., Agrawala, M., Koltun, V.: Interactive furniture layout using interior design guidelines. ACM Trans. Graph. (TOG) 30, 87 (2011)CrossRefGoogle Scholar
  14. 14.
    Michalek, J., Papalambros, P.: Interactive design optimization of architectural layouts. Eng. Optim. 34(5), 485–501 (2002)CrossRefGoogle Scholar
  15. 15.
    Misener, R., Smadbeck, J.B., Floudas, C.A.: Dynamically generated cutting planes for mixed-integer quadratically constrained quadratic programs and their incorporation into GloMIQO 2. Optim. Methods Softw. 30(1), 215–249 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Mitchell, W.J., Steadman, J.P., Liggett, R.S.: Synthesis and optimization of small rectangular floor plans. Environ. Plan. B: Plan. Des. 3(1), 37–70 (1976)CrossRefGoogle Scholar
  17. 17.
    Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007). Scholar
  18. 18.
    Panero, J., Zelnik, M.: Human Dimension and Interior Space: A Source Book of Design Reference Standards. Watson-Guptill, New York (1979)Google Scholar
  19. 19.
    Parish, Y.I., Müller, P.: Procedural modeling of cities. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 301–308. ACM (2001)Google Scholar
  20. 20.
    Pigozzi, G., Tsoukiàs, A., Viappiani, P.: Preferences in artificial intelligence. Ann. Math. Artif. Intell. 77(3–4), 361–401 (2016)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Raman, K., Shivaswamy, P., Joachims, T.: Online learning to diversify from implicit feedback. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 705–713. ACM (2012)Google Scholar
  22. 22.
    Rossi, F., Van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier, Amsterdam (2006)zbMATHGoogle Scholar
  23. 23.
    Shivaswamy, P., Joachims, T.: Online structured prediction via coactive learning. In: ICML, pp. 1431–1438 (2012)Google Scholar
  24. 24.
    Shivaswamy, P., Joachims, T.: Coactive learning. JAIR 53, 1–40 (2015)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Sutherland, I.E.: Sketchpad a man-machine graphical communication system. Trans. Soc. Comput. Simul. 2(5), R–3 (1964)CrossRefGoogle Scholar
  26. 26.
    Teso, S., Passerini, A., Viappiani, P.: Constructive preference elicitation by setwise max-margin learning. In: IJCAI, pp. 2067–2073 (2016)Google Scholar
  27. 27.
    Teso, S., Sebastiani, R., Passerini, A.: Structured learning modulo theories. Artif. Intell. 244, 166–187 (2015)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Tidd, W.F., Rinderle, J.R., Witkin, A.: Design refinement via interactive manipulation of design parameters and behaviors. In: ASME DTM (1992)Google Scholar
  29. 29.
    Turton, R., Bailie, R.C., Whiting, W.B., Shaeiwitz, J.A.: Analysis, Synthesis and Design of Chemical Processes. Pearson Education, London (2008)Google Scholar
  30. 30.
    Xu, W., Wang, B., Yan, D.M.: Wall grid structure for interior scene synthesis. Comput. Graph. 46, 231–243 (2015)CrossRefGoogle Scholar
  31. 31.
    Yeh, Y.T., Yang, L., Watson, M., Goodman, N.D., Hanrahan, P.: Synthesizing open worlds with constraints using locally annealed reversible jump MCMC. ACM TOG 31(4), 56 (2012)CrossRefGoogle Scholar
  32. 32.
    Yu, L.F., et al.: Make it home: automatic optimization of furniture arrangement. SIGGRAPH 30(4) (2011)Google Scholar
  33. 33.
    Zhao, Y., Liu, S.: Global optimization algorithm for mixed integer quadratically constrained quadratic program. J. Comput. Appl. Math. 319, 159–169 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Luca Erculiani
    • 1
  • Paolo Dragone
    • 1
    • 3
  • Stefano Teso
    • 2
    Email author
  • Andrea Passerini
    • 1
  1. 1.University of TrentoTrentoItaly
  2. 2.KU LeuvenLeuvenBelgium
  3. 3.TIM-SKILTrentoItaly

Personalised recommendations