Advertisement

Biorefinery pp 727-740 | Cite as

Screening and Production of Biogas from Macro Algae Biomass of Padina boergesenii, Colpomenia sinuosa, and Ulva sp.

  • Rashed H. Farzanah
  • Grzegorz Przemyslaw BrudeckiEmail author
  • Iwona Cybulska
  • Juan-Rodrigo Bastidas-Oyanedel
  • Jens Ejbye Schmidt
  • Mette Hedegaard Thomsen
Chapter

Abstract

This chapter focuses on the bioprospecting of macro algae species in the Arabian Gulf, Abu Dhabi coast. Three species of macro algae were collected and subjected for detailed analysis and determination of biogas potentials, Padina boergesenii, Colpomenia sinuosa, and Ulva sp. Composition analysis and elemental analysis were used to determine bioenergy potentials. Anaerobic digestion of the three macro algae samples was carried out at two different volatile solid loadings (0.2 and 0.5%). The results showed significant methane yield for all three species, with Ulva sp. yielding higher methane production compared to Padina boergesenii and Colpomenia sinuosa. Biogas production for Ulva sp. was furthermore carried out at 1%, 3%, and 5% VS loading. The highest specific methane production for Ulva sp. was observed with 1% VS reaching 223 ml_CH4/gVS in 27 days.

Keywords

Biogas Macro algae Seawater Padina boergesenii Colpomenia sinuosa Ulva sp. 

References

  1. Achinas S, Euverink GJW (2016) Theoretical analysis of biogas potential prediction from agricultural waste. Resour Technol 2:143–147.  https://doi.org/10.1016/j.reffit.2016.08.001CrossRefGoogle Scholar
  2. Angelidaki I, Alves M, Bolzonella D, Borzacconi L, Campos JL, Guwy AJ, Kalyuzhnyi S, Jenicek P, van Lier JB (2009) Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci Technol 59:927–934CrossRefGoogle Scholar
  3. Bastidas-Oyanedel JR, Mohd-Zaki Z, Pratt S, Steyer JP, Batstone DJ (2010) Development of membrane inlet mass spectrometry for examination of fermentation processes. Talanta 83:482–492CrossRefGoogle Scholar
  4. Bikker P, van Krimpen MM, van Wikselaar P, Houweling-Tan B, Scaccia N, van Hal JW, Huijgen WJJ, Cone JW, López-Contreras AM (2016) Biorefinery of the green seaweed Ulva lactuca to produce animal feed, chemicals and biofuels. J Appl Phycol 28:3511–3525.  https://doi.org/10.1007/s10811-016-0842-3CrossRefGoogle Scholar
  5. Chen H, Zhou D, Luo G, Zhang S, Chen J (2015) Macroalgae for biofuels production: progress and perspectives. Renew Sust Energ Rev 47:427–437.  https://doi.org/10.1016/j.rser.2015.03.086CrossRefGoogle Scholar
  6. Demirbas A, Demirbas F (2011) Importance of algae oil as a source of biodiesel. Energy Convers Manag 52:163–170.  https://doi.org/10.1016/j.enconman.2010.06.055CrossRefzbMATHGoogle Scholar
  7. Fleurence J (1999) Seaweed proteins: biochemical, nutritional aspects and potential uses. Food Sci Technol 10:25–28.  https://doi.org/10.1002/ppap.201100070CrossRefGoogle Scholar
  8. Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Tilman D, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478:337–342.  https://doi.org/10.1038/nature10452CrossRefGoogle Scholar
  9. Fortes MD, Luning K (1980) Growth rates of North Sea macroalgae in relation to temperature, irradiance and photoperiod. Helgolä Meeresun 34:15–29CrossRefGoogle Scholar
  10. Golberg A, Vitkin E, Linshiz G, Khan SA, Hillson NJ, Yakhini Z, Yarmush ML (2012) Proposed design of distributed macroalgal biorefineries: thermodynamics, bioconversion technology, and sustainability implications for developing economies. Biofuels Bioprod Biorefin 8:67–82.  https://doi.org/10.1002/bbbCrossRefGoogle Scholar
  11. Hughes AD, Kelly MS, Black KD, Stanley MS (2012) Biogas from macroalgae: is it time to revisit the idea? Biotechnol Biofuels 5:1–7.  https://doi.org/10.1186/1754-6834-5-86CrossRefGoogle Scholar
  12. Jiao G, Yu G, Zhang J, Ewart HS (2011) Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar Drugs 9:196–233.  https://doi.org/10.3390/md9020196CrossRefGoogle Scholar
  13. Kim S-K (2015) Handbook of marine biotechnology. Springer, Berlin. ISBN 9783642539701Google Scholar
  14. Lahaye M, Jegou D, Buleon A (1994) Chemical characteristics of insoluble glucans from the cell wall of the marine green alga Ulva lactuca (L.) Thuret. Carbohydr Res 262:115–125.  https://doi.org/10.1016/0008-6215(94)84008-3CrossRefGoogle Scholar
  15. Laurens LML (2013) Summative mass analysis of algal biomass—integration of analytical procedures. National Renewable Energy Laboratory; 14.  https://doi.org/10.2172/1118072
  16. Lee RE (2008) Phycology, vol 91, 4th edn. Cambridge University Press, Cambridge. ISBN 9780521864084CrossRefGoogle Scholar
  17. Lu D, Zhang M, Wang S, Cai J, Zhou X, Zhu C (2010) Nutritional characterization and changes in quality of Salicornia bigelovii Torr. during storage. LWT Food Sci Technol 43:519–524.  https://doi.org/10.1016/j.lwt.2009.09.021CrossRefGoogle Scholar
  18. Montingelli ME, Tedesco S, Olabi AG (2015) Biogas production from algal biomass: a review. Renew Sust Energ Rev 43:961–972.  https://doi.org/10.1016/j.rser.2014.11.052CrossRefGoogle Scholar
  19. Pérez MJ, Falqué E, Domínguez H (2016) Antimicrobial action of compounds from marine seaweed. Mar Drugs 14:1–38.  https://doi.org/10.3390/md14030052CrossRefGoogle Scholar
  20. Reich B (2011) Bioenergy potential of Ulva lactuca: biomass yield, methane production and combustion. Bioresour Technol 102:2595–2604.  https://doi.org/10.1016/j.biortech.2010.10.010CrossRefGoogle Scholar
  21. Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ (2008) A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opin Biotechnol 19:430–436.  https://doi.org/10.1016/j.copbio.2008.07.008CrossRefGoogle Scholar
  22. Selig MJ, Weiss N, Ji Y (2008) Enzymatic saccharification of lignocellulosic biomass. Renew Energy. NREL/TP-51Google Scholar
  23. Sluiter A, Hames B, Hyman D, Payne C, Ruiz R, Scarlata C, Sluiter J, Templeton D, Nrel JW (2008a) Determination of total solids in biomass and total dissolved solids in liquid process samples. National Renewable Energy Laboratory, Golden. NREL/TP-510-42621Google Scholar
  24. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008b) Determination of ash in biomass: Laboratory Analytical Procedure (LAP). National Renewable Energy Laboratory, Golden. NREL/TP-510-42622Google Scholar
  25. Sluiter A, Hames B, Ruiz RO, Scarlata C, Sluiter J, Templeton D (2011) Energy D. of determination of structural carbohydrates and lignin in biomass. Biomass Anal Technol Team Lab Anal Proced. NREL/TP-51Google Scholar
  26. van der Wal H, Sperber BLHM, Houweling-Tan B, Bakker RRC, Brandenburg W, López-Contreras AM (2013) Production of acetone, butanol, and ethanol from biomass of the green seaweed Ulva lactuca. Bioresour Technol 128:431–437.  https://doi.org/10.1016/j.biortech.2012.10.094CrossRefGoogle Scholar
  27. Waite TD, Spielman LA, Mitchell R (1972) Growth rate determination of the macrophyte Ulva in continuous culture. Environ Sci Technol 6:1096–1100CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rashed H. Farzanah
    • 1
  • Grzegorz Przemyslaw Brudecki
    • 1
    Email author
  • Iwona Cybulska
    • 1
    • 2
  • Juan-Rodrigo Bastidas-Oyanedel
    • 1
  • Jens Ejbye Schmidt
    • 3
  • Mette Hedegaard Thomsen
    • 4
  1. 1.Chemical Engineering DepartmentKhalifa University of Science and Technology, Masdar Institute, Masdar CityAbu DhabiUnited Arab Emirates
  2. 2.Catholic University of LouvainLouvain-la-NeuveBelgium
  3. 3.SDC-Department of Chemical Engineering, Biotechnology and Environmental TechnologyUniversity of Southern DenmarkOdense MDenmark
  4. 4.Department of Energy TechnologyAalborg UniversityEsbjergDenmark

Personalised recommendations