Advertisement

Biorefinery pp 571-592 | Cite as

Enzymatic Processing of Technical Lignins into Materials

  • G. M. Guebitz
  • Alessandro Pellis
  • Gibson S. NyanhongoEmail author
Chapter

Abstract

The declining fossil-based resources dominating our industry and their processing associated with environmental pollution and climate change are shifting attention towards bio-based renewable resources as alternative industrial raw material and the use of green technologies. Among these bio-based resources, lignin, a major by-product of the pulp and paper industry, is emerging as a possible raw material with potential to replace many fossil-based chemicals and materials. However, lignin is a highly heterogeneous complex material whose physico-chemical properties depend on the source of lignocellulose material (soft or hard wood), modifications introduced during the pulping process (sulphite, sulphate, solvent or soda) and other associated impurities arising from the pulping process. In addition, lignin is characterized by strong inter- and intra-hydrogen bonding, which makes lignin immiscible in polymer blends or lignin-based materials brittle. Lignin therefore requires processing to make it a suitable raw material. Several chemical, physical and biotechnological methods are being developed to make lignin suitable for the synthesis of a variety of different products. Oxidative enzyme-based methods, especially laccases and peroxidases, are emerging as the most promising efficient green biocatalysts. This chapter highlights advances in the development of enzyme-based processes for making lignin suitable for synthesizing lignin-based materials. Unlike previous general overviews, this chapter places special emphasis on changes that enzymes introduce in different types of lignin at molecular level and the properties of the modified lignin and potential application.

Keywords

Oxidative enzymes Laccases Peroxidases Lignin Lignin polymerizations Lignin-based materials 

References

  1. Abou-Mansour E, Polier J, Pezet R, Tabacchi R (2010) Purification and partial characterisation of a 60 KDa laccase from Fomitiporia mediterranea. Phytopathol Mediterr 48:447–453Google Scholar
  2. Ansari A, Pawlik M (2007) Floatability of chalcopyrite and molybdenite in the presence of lignosulfonates. Part I. Adsorption studies. Miner Eng 20:600–608CrossRefGoogle Scholar
  3. Aracri E, Díaz Blanco C, Tzanov T (2014) An enzymatic approach to develop a lignin-based adhesive for wool floor coverings. Green Chem 16:2597CrossRefGoogle Scholar
  4. Areskogh D, Li J, Gellerstedt G, Henriksson G (2010a) Structural modification of commercial lignosulphonates through laccase catalysis and ozonolysis. Ind Crop Prod 32:458–466CrossRefGoogle Scholar
  5. Areskogh D, Li J, Gellerstedt G, Henriksson G (2010b) Investigation of the molecular weight increase of commercial lignosulfonates by laccase catalysis. Biomacromolecules 11:904–910CrossRefGoogle Scholar
  6. Areskogh D, Li J, Nousiainen P, Gellerstedt G, Sipilä J, Henriksson G (2010c) Oxidative polymerisation of models for phenolic lignin end-groups by laccase. Holzforschung 64:21–34CrossRefGoogle Scholar
  7. Argyropoulos DS, Jurasek L, Krištofová L, Xia Z, Sun Y, Paluš E (2002) Abundance and reactivity of dibenzodioxocins in softwood lignin. J Agric Food Chem 50(4):658–666.  https://doi.org/10.1021/JF010909GCrossRefGoogle Scholar
  8. Bae HJ, Kim YS (1996) Degradation of lignosulfonates by simultaneous action of laccase and Mn-peroxidase. In: Biotechnology in the pulp and paper industry. ACS, New YorkGoogle Scholar
  9. Behling R, Valange S, Chatel G (2016) Heterogeneous catalytic oxidation for lignin valorization into valuable chemicals: what results? What limitations? What trends? Green Chem 18:1839–1854CrossRefGoogle Scholar
  10. Berlin A, Balakshin M (2014) Industrial lignins, analysis, properties, and applications. In: Gupta VK (ed) Bioenergy research: advances and applications. Elsevier, New York, pp 315–336CrossRefGoogle Scholar
  11. Blinkovsky AM, Dordick JS (1993) Peroxidase-catalyzed synthesis of lignin–phenol copolymers. J Polym Sci Part A Polym Chem 31:1839–1846CrossRefGoogle Scholar
  12. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546CrossRefGoogle Scholar
  13. Bouajila J, Dole P, Joly C, Limare A (2006) Some laws of a lignin plasticization. J Appl Polym Sci 102:1445–1451CrossRefGoogle Scholar
  14. Bourbonnais R, Paice MG, Reid ID, Lanthier P, Yaguchi M (1995) Lignin oxidation by laccase isozymes from Trametes versicolor and role of the mediator 2,2′-azinobis(3-ethylbenzthiazoline-6-sulfonate) in kraft lignin depolymerization. Appl Environ Microbiol 61:1876–1880Google Scholar
  15. Call HP, Mücke I (1997) History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems (Lignozym®-process). J Biotechnol 53:163–202CrossRefGoogle Scholar
  16. Cannatelli MD, Ragauskas AJ (2017) Laccase-mediated synthesis of lignin-core hyperbranched copolymers. Appl Microbiol Biotechnol 101:6343–6353CrossRefGoogle Scholar
  17. Chandra RP, Ragauskas AJ (2008) Modification of high-lignin kraft pulps with laccase. Part 2. Xylanase-enhanced strength benefits. Biotechnol Prog 21:1302–1306CrossRefGoogle Scholar
  18. Chen F, Dai H, Dong X, Yang J, Zhong M (2011) Physical properties of lignin-based polypropylene blends. Polym Compos 32:1019–1025CrossRefGoogle Scholar
  19. Cho N-S, Shin W-S, Jeong S-W, Leonowicz A (2004) Degradation of lignosulfonate by fungal laccase with low molecular mediators. Bull Korean Chem Soc 25:1551–1554CrossRefGoogle Scholar
  20. Crestini C, Melone F, Sette M, Saladino R (2011) Milled wood lignin: a linear oligomer. Biomacromolecules 12:3928–3935CrossRefGoogle Scholar
  21. Cruz JM, Domínguez JM, Domínguez H, Parajó JC (2001) Antioxidant and antimicrobial effects of extracts from hydrolysates of lignocellulosic materials. J Agric Food Chem 49(5):2459–2464.  https://doi.org/10.1021/JF001237HCrossRefGoogle Scholar
  22. Derkacheva OY (2013) Estimation of aromatic structure contents in hardwood lignins from ir absorption spectra. J Appl Spectrosc 80:670–676CrossRefGoogle Scholar
  23. Dong-jie Y, Hai-feng Z, Shao-qu X, Xiao-lei W, Xue-qing Q (2013) Sulfomethylation reactivity of alkali lignin with laccase modification. Acta Polym Sin 13:232–240CrossRefGoogle Scholar
  24. Duval A, Molina-Boisseau S, Chirat C (2015) Fractionation of lignosulfonates: comparison of ultrafiltration and ethanol solubility to obtain a set of fractions with distinct properties. Holzforschung 69:127–134CrossRefGoogle Scholar
  25. Dwivedi UN, Singh P, Pandey VP, Kumar A (2011) Structure–function relationship among bacterial, fungal and plant laccases. J Mol Catal B: Enzym 68:117–128CrossRefGoogle Scholar
  26. Elegir G, Daina S, Zoia L, Bestetti G, Orlandi M (2005) Laccase mediator system: oxidation of recalcitrant lignin model structures present in residual kraft lignin. Enzyme Microb Technol 37:340–346CrossRefGoogle Scholar
  27. Elegir G, Bussini D, Antonsson S, Lindström ME, Zoia L (2007) Laccase-initiated cross-linking of lignocellulose fibres using a ultra-filtered lignin isolated from kraft black liquor. Appl Microbiol Biotechnol 77:809–817CrossRefGoogle Scholar
  28. Elegir G, Kindl A, Sadocco P, Orlandi M (2008) Development of antimicrobial cellulose packaging through laccase-mediated grafting of phenolic compounds. Enzyme Microb Technol 43:84–92CrossRefGoogle Scholar
  29. Felby C, Pedersen LS, Nielsen BR (1997) Enhanced auto adhesion of wood fibers using phenol oxidases. Holzforschung 51:281–286CrossRefGoogle Scholar
  30. Fernández-Costas C, Palanti S, Sanromán MÁ, Moldes D (2017) Enzymatic grafting of kraft lignin as a wood bio-protection strategy. Part 2: effectiveness against wood destroying basidiomycetes. Effect of copper entrapment. Holzforschung 71:689–695Google Scholar
  31. Ferrari RP, Laurenti E, Trotta F (1999) Oxidative 4-dechlorination of 2,4,6-trichlorophenol catalyzed by horseradish peroxidase. J Biol Inorg Chem 4:232–237CrossRefGoogle Scholar
  32. Fiţigău IF, Peter F, Boeriu CG (2013) Oxidative polymerization of lignins by laccase in water-acetone mixture. Acta Biochim Pol 60:817–822Google Scholar
  33. Fiţigău IF, Boeriu CG, Peter F (2015) Enzymatic modification of different lignins through oxidative coupling with hydrophilic compounds. Macromol Symp 352:78–86CrossRefGoogle Scholar
  34. Fonseca MI, Fariña JI, Sadañoski MA, D’Errico R, Villalba LL, Zapata PD (2015) Decolorization of Kraft liquor effluents and biochemical characterization of laccases from Phlebia brevispora BAFC 633. Int Biodeter Biodegr 104:443–451CrossRefGoogle Scholar
  35. Frasconi M, Favero G, Boer H, Koivula A, Mazzei F (2010) Kinetic and biochemical properties of high and low redox potential laccases from fungal and plant origin. Biochim Biophys Acta Proteins Proteomics 1804:899–908CrossRefGoogle Scholar
  36. Gao G, Karaaslan MA, Kadla JF, Ko F (2014) Enzymatic synthesis of ionic responsive lignin nanofibres through surface poly(N-isopropylacrylamide) immobilization. Green Chem 16:3890–3898CrossRefGoogle Scholar
  37. Gillet S, Aguedo M, Petitjean L, Morais ARC, da Costa Lopes AM, Łukasik RM, Anastas PT (2017) Lignin transformations for high value applications: towards targeted modifications using green chemistry. Green Chem 19:4200–4233CrossRefGoogle Scholar
  38. Gillgren T, Hedenström M, Jönsson LJ (2017) Comparison of laccase-catalyzed cross-linking of organosolv lignin and lignosulfonates. Int J Biol Macromol 105:438–446CrossRefGoogle Scholar
  39. Gordobil O, Moriana R, Zhang L, Labidi J, Sevastyanova O (2016) Assessment of technical lignins for uses in biofuels and biomaterials: structure-related properties, proximate analysis and chemical modification. Ind Crop Prod 83:155–165CrossRefGoogle Scholar
  40. Gouveia S, Fernández-Costas C, Sanromán MA, Moldes D (2012) Enzymatic polymerisation and effect of fractionation of dissolved lignin from Eucalyptus globulus Kraft liquor. Bioresour Technol 121:131–138CrossRefGoogle Scholar
  41. Gouveia S, Fernández-Costas C, Sanromán MA, Moldes D (2013) Polymerisation of Kraft lignin from black liquors by laccase from Myceliophthora thermophila: effect of operational conditions and black liquor origin. Bioresour Technol 131:288–294CrossRefGoogle Scholar
  42. Grönqvist S, Viikari L, Niku ML (2005) Oxidation of milled wood lignin with laccase, tyrosinase and horseradish peroxidase. Appl Microbiol Biotechnol 67(4):489–494CrossRefGoogle Scholar
  43. Hataaka A, Mettala A, Toikka B, Hortling B, Brunow G (1996) Modification of lignin by laccase and manganese peroxidase. In: Biotechnology in the pulp and paper industryGoogle Scholar
  44. Hernández Fernaud JR, Carnicero A, Perestelo F, Hernández Cutuli M, Arias E, Falcón MA (2006) Upgrading of an industrial lignin by using laccase produced by Fusarium proliferatum and different laccase-mediator systems. Enzyme Microb Technol 38:40–48CrossRefGoogle Scholar
  45. Hu J, Zhang Q, Lee D-J (2018) Kraft lignin biorefinery: a perspective. Bioresour Technol 247:1181–1183CrossRefGoogle Scholar
  46. Huber D, Ortner A, Daxbacher A, Nyanhongo GS, Bauer W, Guebitz GM (2016) Influence of oxygen and mediators on laccase-catalyzed polymerization of lignosulfonate. ACS Sustain Chem Eng 4:5303–5310CrossRefGoogle Scholar
  47. Hulin L, Husson E, Bonnet J-P, Stevanovic T, Sarazin C (2015) Enzymatic transesterification of kraft lignin with long acyl chains in ionic liquids. Molecules 20:16334–16353CrossRefGoogle Scholar
  48. Humpert D, Ebrahimi M, Czermak P (2016) Membrane technology for the recovery of lignin: a review. Membranes (Basel) 6:42CrossRefGoogle Scholar
  49. Ibrahim V, Volkova N, Pyo S-H, Mamo G, Hatti-Kaul R (2013a) Laccase catalysed modification of lignin subunits and coupling to p-aminobenzoic acid. J Mol Catal B: Enzym 97:45–53CrossRefGoogle Scholar
  50. Ibrahim V, Mamo G, Gustafsson P-J, Hatti-Kaul R (2013b) Production and properties of adhesives formulated from laccase modified Kraft lignin. Ind Crop Prod 45:343–348CrossRefGoogle Scholar
  51. Ihssen J, Schubert M, Thöny-Meyer L, Richter M (2014) Laccase catalyzed synthesis of iodinated phenolic compounds with antifungal activity. PLoS One 9:e89924CrossRefGoogle Scholar
  52. Janusz G, Pawlik A, Sulej J, Świderska-Burek U, Jarosz-Wilkołazka A, Paszczyński A (2017) Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol Rev 41:941–962CrossRefGoogle Scholar
  53. Jin L, Sellers T, Schultz TP, Nicholas DD (1990) Utilization of lignin modified by brown-rot fungi. I. properties of flakeboard produced with a brown-rotted lignin modified phenolic adhesive. Holzforschung 44:207–210CrossRefGoogle Scholar
  54. Johansson K, Winestrand S, Johansson C, Järnström L, Jönsson LJ (2012) Oxygen-scavenging coatings and films based on lignosulfonates and laccase. J Biotechnol 161:14–18CrossRefGoogle Scholar
  55. Johansson K, Gillgren T, Winestrand S, Järnström L, Jönsson LJ (2014) Comparison of lignin derivatives as substrates for laccase-catalyzed scavenging of oxygen in coatings and films. J Biol Eng 8(1):1CrossRefGoogle Scholar
  56. Jönsson A-S, Wallberg O (2009) Cost estimates of kraft lignin recovery by ultrafiltration. Desalination 237:254–267CrossRefGoogle Scholar
  57. Kai D, Tan MJ, Chee PL, Chua YK, Yap YL, Loh XJ (2016) Towards lignin-based functional materials in a sustainable world. Green Chem 18:1175–1200CrossRefGoogle Scholar
  58. Kalliola A, Asikainen M, Talja R, Tamminen T (2014) Experiences of kraft lignin functionalization by enzymatic and chemical oxidation. BioResources 9:7336–7351CrossRefGoogle Scholar
  59. Kaplan DL (1979) Reactivity of different oxidases with lignins and lignin model compounds. Phytochemistry 18:1917–1919CrossRefGoogle Scholar
  60. Kersten PJ, Kalyanaraman B, Hammel KE, Reinhammar B, Kirk TK (1990) Comparison of lignin peroxidase, horseradish peroxidase and laccase in the oxidation of methoxybenzenes. Biochem J 268:475–480CrossRefGoogle Scholar
  61. Kharazipour A, Mai C, Hüttermann A (1998) Polyphenols for compounded materials. Polym Degrad Stab 59:237–243CrossRefGoogle Scholar
  62. Kiiskinen L-L, Kruus K, Bailey M, Ylösmäki E, Siika-aho M, Saloheimo M (2004) Expression of Melanocarpus albomyces laccase in Trichoderma reesei and characterization of the purified enzyme. Microbiology 150:3065–3074CrossRefGoogle Scholar
  63. Kubo S, Kadla JF (2004) Macromolecules 37:6904–6911CrossRefGoogle Scholar
  64. Kudanga T, Nugroho Prasetyo E, Sipilä J, Eberl A, Nyanhongo G, Guebitz G (2009) Coupling of aromatic amines onto syringylglycerol β-guaiacylether using Bacillus SF spore laccase: a model for functionalization of lignin-based materials. J Mol Catal B: Enzym 61:143–149CrossRefGoogle Scholar
  65. Kudanga T, Prasetyo EN, Sipilä J, Guebitz GM, Nyanhongo GS (2010a) Reactivity of long chain alkylamines to lignin moieties: Implications on hydrophobicity of lignocellulose materials. J Biotechnol 149(1–2):81–87CrossRefGoogle Scholar
  66. Kudanga T, Prasetyo EN, Sipilä J, Nyanhongo GS, Guebitz GM (2010c) Enzymatic grafting of functional molecules to the lignin model dibenzodioxocin and lignocellulose material. Enzyme Microb Technol 46:272–280CrossRefGoogle Scholar
  67. Kudanga T, Prasetyo EN, Sipilä J, Nyanhongo GS, Guebitz GM (2010d) Chemo-enzymatic functionalisation of lignocellulose materials using oxiranes. Process Biochem 45(9):1557–1562CrossRefGoogle Scholar
  68. Kudanga T, Prasetyo EN, Widsten P, Kandelbauer A, Jury S, Heathcote C, Sipilä J, Weber H, Nyanhongo GS, Guebitz GM (2010e) Laccase catalyzed covalent coupling of fluorophenols increases lignocellulose surface hydrophobicity. Bioresour Technol 101(8):2793–2799CrossRefGoogle Scholar
  69. Laurichesse S, Avérous L (2014) Chemical modification of lignins: towards biobased polymers. Prog Polym Sci 39:1266–1290CrossRefGoogle Scholar
  70. Li K, Xu F, Eriksson KE (1999) Comparison of fungal laccases and redox mediators in oxidation of a nonphenolic lignin model compound. Appl Environ Microbiol 65:2654–2660Google Scholar
  71. Lund M, Ragauskas AJ (2001) Enzymatic modification of kraft lignin through oxidative coupling with water-soluble phenols. Appl Microbiol Biotechnol 55:699–703CrossRefGoogle Scholar
  72. Madad N, Chebil L, Charbonnel C, Ioannou I, Ghoul M (2013) Enzymatic polymerization of sodium lignosulfonates: effect of catalysts, initial molecular weight, and mediators. Can J Chem 91:220–225CrossRefGoogle Scholar
  73. Mai C, Milstein O, Hüttermann A (1999) Fungal laccase grafts acrylamide onto lignin in presence of peroxides. Appl Microbiol Biotechnol 51:527–531CrossRefGoogle Scholar
  74. Mai C, Milstein O, Hüttermann A (2000) Chemoenzymatical grafting of acrylamide onto lignin. J Biotechnol 79:173–183CrossRefGoogle Scholar
  75. Maldhure AV, Chaudhari AR, Ekhe JD (2011) Thermal and structural studies of polypropylene blended with esterified industrial waste lignin. J Therm Anal Calorim 103:625–632CrossRefGoogle Scholar
  76. Matsumura E, Yamamoto E, Numata A, Kawano T, Shin T, Murao S (1986) Structures of the laccase-catalyzed oxidation products of hydroxybenzoic acids in the presence of ABTS (2,2′-azino-di-(3-ethylbenzothiazoline-6-sulfonic acid)). Agric Biol Chem 50:1355–1357Google Scholar
  77. McDonnell G, Russell AD (1999) Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12:147–179CrossRefGoogle Scholar
  78. Mikolasch A, Schauer F (2009) Fungal laccases as tools for the synthesis of new hybrid molecules and biomaterials. Appl Microbiol Biotechnol 82:605–624CrossRefGoogle Scholar
  79. Milstein O, Hüttermann A, Fründ R, Lüdemann H-D (1994) Enzymatic co-polymerization of lignin with low-molecular mass compounds. Appl Microbiol Biotechnol 40:760–767CrossRefGoogle Scholar
  80. Morozova OV, Shumakovich GP, Shleev SV, Yaropolov YI (2007) Laccase-mediator systems and their applications: a review. Appl Biochem Microbiol 43:523–535CrossRefGoogle Scholar
  81. Mottiar Y, Vanholme R, Boerjan W, Ralph J, Mansfield SD (2016) Designer lignins: harnessing the plasticity of lignification. Curr Opin Biotechnol 37:190–200CrossRefGoogle Scholar
  82. Moya R, Saastamoinen P, Hernández M, Suurnäkki A, Arias E, Mattinen M-L (2011) Reactivity of bacterial and fungal laccases with lignin under alkaline conditions. Bioresour Technol 102:10006–10012CrossRefGoogle Scholar
  83. Munk L, Andersen ML, Meyer AS (2017a) Direct rate assessment of laccase catalysed radical formation in lignin by electron paramagnetic resonance spectroscopy. Enzyme Microb Technol 106:88–96CrossRefGoogle Scholar
  84. Munk L, Punt AM, Kabel MA, Meyer AS (2017b) Laccase catalyzed grafting of –N–OH type mediators to lignin via radical–radical coupling. RSC Adv 7:3358–3368CrossRefGoogle Scholar
  85. Muralikrishna C, Renganathan V (1993) Peroxidase-catalyzed desulfonation of 3,5-dimethyl-4-hydroxy and 3,5-dimethyl-4-aminobenzenesulfonic acids. Biochem Biophys Res Commun 197:798–804CrossRefGoogle Scholar
  86. Norgren M, Edlund H (2014) Lignin: recent advances and emerging applications. Curr Opin Colloid Interface Sci 19:409–416CrossRefGoogle Scholar
  87. Nugroho Prasetyo E, Kudanga T, Østergaard L, Rencoret J, Gutiérrez A, del Río JCJC, Ignacio Santos J, Nieto L, Jiménez-Barbero J, Martínez ATAT et al (2010) Polymerization of lignosulfonates by the laccase-HBT (1-hydroxybenzotriazole) system improves dispersibility. Bioresour Technol 101:5054–5062CrossRefGoogle Scholar
  88. Nyanhongo GS, Couto SR, Guebitz GM (2006) Coupling of 2,4,6-trinitrotoluene (TNT) metabolites onto humic monomers by a new laccase from Trametes modesta. Chemosphere 64(3):359–370CrossRefGoogle Scholar
  89. Nyanhongo GS, Kudanga T, Prasetyo EN, Guebitz GM (2010) Mechanistic insights into laccase-mediated functionalisation of lignocellulose material. Biotechnol Genet Eng Rev 27:305–330CrossRefGoogle Scholar
  90. Ortner A, Huber D, Haske-Cornelius O, Weber HKHK, Hofer K, Bauer W, Nyanhongo GS, Guebitz GM (2015) Laccase mediated oxidation of industrial lignins: Is oxygen limiting? Process Biochem 50:1277–1283CrossRefGoogle Scholar
  91. Ortner A, Hofer K, Bauer W, Nyanhongo GS, Guebitz GM (2018) Laccase modified lignosulfonates as novel binder in pigment based paper coating formulations. React Funct Polym 123:20–25CrossRefGoogle Scholar
  92. Ouyang XP, Zhang P, Tan CM, Deng YH, Yang DJ, Qiu XQ (2010) Isolation of lignosulfonate with low polydispersity index. Chin Chem Lett 21:1479–1481CrossRefGoogle Scholar
  93. Pandey VP, Awasthi M, Singh S, Tiwari S, Dwivedi UN, Dwivedi UN (2017) A comprehensive review on function and application of plant peroxidases. Biochem Anal Biochem 6:1CrossRefGoogle Scholar
  94. Pfaltzgraff LA, Clark JH (2014) Green chemistry, biorefineries and second generation strategies for re-use of waste: an overview. In: Waldron KW (ed) Advances in biorefineries. Woodhead Publishing, Sawston, pp 3–33CrossRefGoogle Scholar
  95. Prasetyo EN, Kudanga T, Fischer R, Eichinger R, Nyanhongo GS, Guebitz GM (2012) Enzymatic synthesis of lignin-siloxane hybrid functional polymers. Biotechnol J 7(2):284–292CrossRefGoogle Scholar
  96. Rittstieg K, Suurnakki A, Suortti T, Kruus K, Guebitz G, Buchert J (2002) Investigations on the laccase-catalyzed polymerization of lignin model compounds using size-exclusion HPLC. Enzyme Microb Technol 31:403–410CrossRefGoogle Scholar
  97. Sáez-Jiménez V, Rencoret J, Rodríguez-Carvajal MA, Gutiérrez A, Ruiz-Dueñas FJ, Martínez AT (2016) Role of surface tryptophan for peroxidase oxidation of nonphenolic lignin. Biotechnol Biofuels 9:198CrossRefGoogle Scholar
  98. Shogren RL, Biswas A (2013) Preparation of starch–sodium lignosulfonate graft copolymers via laccase catalysis and characterization of antioxidant activity. Carbohydr Polym 91:581–585CrossRefGoogle Scholar
  99. Si J, Peng F, Cui B (2013) Purification, biochemical characterization and dye decolorization capacity of an alkali-resistant and metal-tolerant laccase from Trametes pubescens. Bioresour Technol 128:49–57CrossRefGoogle Scholar
  100. Sivasankarapillai G, McDonald AG (2011) Synthesis and properties of lignin-highly branched poly (ester-amine) polymeric systems. Biomass Bioenergy 35:919–931CrossRefGoogle Scholar
  101. Stewart D (2008) Lignin as a base material for materials applications: chemistry, application and economics. Ind Crop Prod 27:202–207CrossRefGoogle Scholar
  102. Sun M, Hong C-Y, Pan C-Y (2012) A unique aliphatic tertiary amine chromophore: fluorescence, polymer structure, and application in cell imaging. J Am Chem Soc 134:20581–20584CrossRefGoogle Scholar
  103. Sun Y, Qiu X, Liu Y (2013) Chemical reactivity of alkali lignin modified with laccase. Biomass Bioenergy 55:198–204CrossRefGoogle Scholar
  104. Tejado A, Peña C, Labidi J, Echeverria JM, Mondragon I (2007) Physico-chemical characterization of lignins from different sources for use in phenol–formaldehyde resin synthesis. Bioresour Technol 98:1655–1663CrossRefGoogle Scholar
  105. Tobimatsu Y, Takano T, Kamitakahara H, Nakatsubo F (2010) Reactivity of syringyl quinone methide intermediates in dehydrogenative polymerization I: high-yield production of synthetic lignins (DHPs) in horseradish peroxidase-catalyzed polymerization of sinapyl alcohol in the presence of nucleophilic reagents. J Wood Sci 56:233–241CrossRefGoogle Scholar
  106. Toledano A, Serrano L, Garcia A, Mondragon I, Labidi J (2010a) Comparative study of lignin fractionation by ultrafiltration and selective precipitation. Chem Eng J 157:93–99CrossRefGoogle Scholar
  107. Toledano A, García A, Mondragon I, Labidi J (2010b) Lignin separation and fractionation by ultrafiltration. Sep Purif Technol 71:38–43CrossRefGoogle Scholar
  108. Trovaslet-Leroy M, Jolivalt C, Froment M-T, Brasme B, Lefebvre B, Daveloose D, Nachon F, Masson P (2010) Application of laccase-mediator system (LMS) for the degradation of organophosphorus compounds. Chem Biol Interact 187:393–396CrossRefGoogle Scholar
  109. Unbehaun H, Dittler B, Kühne G, Wagenführ A (2000) Investigation into the biotechnological modification of wood and its application in the wood-based material industry. Acta Biotechnol 20:305–312CrossRefGoogle Scholar
  110. van de Pas D, Hickson A, Donaldson L, Lloyd-Jones G, Tamminen T, Fernyhough A, Mattinen ML (2011) Characterization of fractionated lignins polymerized by fungal laccases. BioResources 6:1105–1121Google Scholar
  111. Wang Y, Chantreau M, Sibout R, Hawkins S (2013) Plant cell wall lignification and monolignol metabolism. Front Plant Sci 4:220Google Scholar
  112. Wang J, Feng J, Jia W, Chang S, Li S, Li Y (2015) Lignin engineering through laccase modification: a promising field for energy plant improvement. Biotechnol Biofuels 8:145CrossRefGoogle Scholar
  113. Weihua Q, Hongzhang C (2008) An alkali-stable enzyme with laccase activity from entophytic fungus and the enzymatic modification of alkali lignin. Bioresour Technol 99:5480–5484CrossRefGoogle Scholar
  114. Witayakran S, Ragauskas AJ (2009a) Modification of high-lignin softwood kraft pulp with laccase and amino acids. Enzyme Microb Technol 44:176–181CrossRefGoogle Scholar
  115. Witayakran S, Ragauskas AJ (2009b) Synthetic applications of laccase in green chemistry. Adv Synth Catal 351:1187–1209CrossRefGoogle Scholar
  116. Xu F, Kulys JJ, Duke K, Li K, Krikstopaitis K, Deussen HJ, Abbate E, Galinyte V, Schneider P (2000) Redox chemistry in laccase-catalyzed oxidation of N-hydroxy compounds. Appl Environ Microbiol 66:2052–2056CrossRefGoogle Scholar
  117. Yang D, Chang Y, Wu X, Qiu X, Lou H (2014a) Modification of sulfomethylated alkali lignin catalyzed by horseradish peroxidase. RSC Adv 4:53855–53863CrossRefGoogle Scholar
  118. Yang D, Wu X, Qiu X, Chang Y, Lou H (2014b) Polymerization reactivity of sulfomethylated alkali lignin modified with horseradish peroxidase. Bioresour Technol 155:418–421CrossRefGoogle Scholar
  119. Yang D, Huang W, Qiu X, Lou H, Qian Y (2017) Modifying sulfomethylated alkali lignin by horseradish peroxidase to improve the dispersibility and conductivity of polyaniline. Appl Surf Sci 426:287–293CrossRefGoogle Scholar
  120. Zhang Y, Dong A, Fan X, Wang Q, Zhang Y, Yu Y, Cavaco-Paulo A (2016) Laccase-catalyzed synthesis of conducting polyaniline-lignosulfonate composite. J Appl Polym Sci 133:42941Google Scholar
  121. Zhou H, Qiu X, Yang D, Xie S (2016) Laccase and xylanase incubation enhanced the sulfomethylation reactivity of alkali lignin. ACS Sustain Chem Eng 4:1248–1254CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • G. M. Guebitz
    • 1
  • Alessandro Pellis
    • 2
  • Gibson S. Nyanhongo
    • 1
    Email author
  1. 1.Institute of Environmental BiotechnologyUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
  2. 2.Department of ChemistryUniversity of York, Green Chemistry Centre of ExcellenceYorkUK

Personalised recommendations