Advertisement

Biorefinery pp 555-570 | Cite as

Recent Advances on Enzymatic Catalysis as a Powerful Tool for the Sustainable Synthesis of Bio-Based Polyesters

  • Alessandro PellisEmail author
  • Gibson S. Nyanhongo
  • Thomas J. Farmer
Chapter

Abstract

The biocatalyzed synthesis of polyesters is a field exploited since the 1980s when the potential of enzymes for catalyzing selective and stereospecific reactions was reported in several breakthrough studies. This chapter focuses on the most recent developments of enzymatic catalysis when applied in the field of bio-based polyester synthesis. A brief introduction summarizes the history and refreshes the memory of the reader on the most relevant reaction mechanisms. Subsequent sections discuss first the possibility of using novel biocatalysts for the synthesis of aliphatic polyesters, moving to polymers where the selectivity of enzymes and their mild reaction conditions are the key of success for producing functional products and ending with aliphatic-aromatic polyesters, highlighting issues and challenges that arose for the polycondensation of these important monomers. Finally, an outlook on the future perspectives and industrialization potential of this technology is given, supporting the ambitions of moving toward a greener polymer chemistry therefore fitting the current needs of moving away from the traditionally used petrochemical monomers.

Keywords

Enzymatic polymerizations Bio-based polyesters Biocatalyzed synthesis Functional polyesters Candida antarctica lipase B (CaLB) Cutinases 

Abbreviations

BDO

1,4-Butanediol

CaLB

Candida antarctica lipase B

Cut1

Cutinase 1 from Thermobifida cellulosilytica

DBTO

Dibutyl tin oxide

DMA

Dimethyl adipate

DMI

Dimethyl itaconate

EGDM

Ethylene glycol dimethacrylate

EHDA

9,10-Epoxy-18-hydroxyoctadecanoic acid

GLC

Glycerol

Glux-diester

2,4:3,5-di-O-Methylene-d-glucarate

Glux-diol

2,4:3,5-di-O-Methylene-d-glucitol

HEMA

N-(2-hydroxyethyl)maleimide

IA

Itaconic acid

iCaLB

CaLB covalently immobilized on epoxy-activated beads

iCut1

iCut1 covalently immobilized on epoxy-activated beads

MPEG

Methoxylated-poly(ethylene glycol)

MWe

Microwave energy

N435

Novozyme 435

ODO

1,8-Octanediol

PBSI

Poly(1,4-butylene succinate-co-1,4-butylene itaconate)

PES

Poly(ethylene succinate)

PGA

Poly(glycerol adipate)

PHAs

Poly(hydroxy alkanoates)

ROP

Ring-opening polymerization

Sc(OTf)3

Scandium trifluoromethanesulfonate

scCO2

Supercritical CO2

TBD

1,5,7-Triazabicyclo[4,4,0]dec-5-ene

TMPO

Trimethylolpropane oxetane

YLL

Yarrowia lipolytica lipase

ε-CL

ε-Caprolactone

Notes

Acknowledgment

Alessandro Pellis thanks the FWF Erwin Schrödinger fellowship (grant agreement J 4014-N34 for financial support).

References

  1. Banghale AS et al (2012) Enzyme-catalyzed polymerization of end-functionalized polymers in a microreactor. Macromolecules 45:7000–7008.  https://doi.org/10.1021/ma301178kCrossRefGoogle Scholar
  2. Barrera-Rivera KA, Martínez-Richa A (2017) Yarrowia lipolytica extracellular lipase Lip2 as biocatalyst for the ring-opening polymerization of ε-caprolactone. Molecules 22:1917.  https://doi.org/10.3390/molecules22111917CrossRefGoogle Scholar
  3. Bilal MH et al (2017) Synthesis of poly(glycerol adipate)-g-oleate and its ternary phase diagram with glycerol monooleate and water. Eur Polym J 91:162–175.  https://doi.org/10.1016/j.eurpolymj.2017.03.057CrossRefGoogle Scholar
  4. Brogan APS, Hallett JP (2016) Solubilizing and stabilizing proteins in anhydrous ionic liquids through formation of protein–polymer surfactant nanoconstructs. J Am Chem Soc 138:4494–4501.  https://doi.org/10.1021/jacs.5b13425CrossRefGoogle Scholar
  5. Cantone S et al (2013) Efficient immobilisation of industrial biocatalysts: criteria and constraints for the selection of organic polymeric carriers and immobilisation methods. Chem Soc Rev 42:6262–6276.  https://doi.org/10.1039/C3CS35464DCrossRefGoogle Scholar
  6. Cerea G et al (2012) Process for the production of polyesters through synthesis catalyzed by enzyme. WO2013110446A1, World PatentGoogle Scholar
  7. Chanda S, Ramakrishnan S (2015) Poly(alkylene itaconate)s—an interesting class of polyesters with periodically located exo-chain double bonds susceptible to Michael addition. Polym Chem 6:2108.  https://doi.org/10.1039/c4py01613kCrossRefGoogle Scholar
  8. Corici L et al (2015) Understanding potentials and restrictions of solvent-free enzymatic polycondensation of itaconic acid: an experimental and computational analysis. Adv Synth Catal 357:1763–1774.  https://doi.org/10.1002/adsc.201500182CrossRefGoogle Scholar
  9. Corici L et al (2016) Large scale applications of immobilized enzymes call for sustainable and inexpensive solutions: rice husks as renewable alternatives to fossil-based organic resins. RSC Adv 6:63256-63270. https://doi.org/10.1039/C6RA12065BCrossRefGoogle Scholar
  10. Cruz-Izquierdo A et al (2015) Lipase-catalyzed synthesis of oligoesters of 2,5-furandicarboxylic acid with aliphatic diols. Pure Appl Chem 87:59–69.  https://doi.org/10.1515/pac-2014-1003CrossRefGoogle Scholar
  11. Curia S, Howdle S (2016) Towards sustainable polymeric nano-carriers and surfactants: facile low temperature enzymatic synthesis of bio-based amphiphilic copolymers in scCO2. Polym Chem 7:2130–2142.  https://doi.org/10.1039/C6PY00066ECrossRefGoogle Scholar
  12. Curia S et al (2015) Green process for green materials: viable low-temperature lipase-catalysed synthesis of renewable telechelics in supercritical CO2. Phil Phil Trans R Soc A 373:20150073.  https://doi.org/10.1098/rsta.2015.0073CrossRefGoogle Scholar
  13. Debuissy T et al (2017) Lipase-catalyzed synthesis of biobased and biodegradable aliphatic copolyesters. Eur Polym J 97:328–337CrossRefGoogle Scholar
  14. Duskunkorur HO et al (2014) Lipase catalyzed synthesis of polycaprolactone and clay-based nanohybrids. Polymer 55:1648–1655.  https://doi.org/10.1016/j.polymer.2014.02.016CrossRefGoogle Scholar
  15. Farmer TJ et al (2015) Synthesis of unsaturated polyester resins from various bio-derived platform molecules. Int J Mol Sci 16:14912–14932.  https://doi.org/10.3390/ijms160714912CrossRefGoogle Scholar
  16. Finnveden M et al (2016) One-component thiol-alkene functional oligoester resins utilizing lipase catalysis. Macromol Chem Phys 217:1335–1341.  https://doi.org/10.1002/macp.201500490CrossRefGoogle Scholar
  17. Fodor C et al (2017) Enzymatic approach for the synthesis of biobased aromatic aliphatic oligo-polyesters. Polym Chem 8(44):6795–6805.  https://doi.org/10.1039/x0xx00000xCrossRefGoogle Scholar
  18. Frampton MB, Zelisko PM (2013) Synthesis of lipase-catalysed silicone-polyesters and silicone-polyamides at elevated temperatures. Chem Commun 49:9269.  https://doi.org/10.1039/c3cc45380dCrossRefGoogle Scholar
  19. Frampton MB et al (2013) Synthesis of polyesters containing disiloxane subunits: structural characterization, kinetics, and an examination of the thermal tolerance of Novozym-435. J Mol Catal B Enzym 85–86:149–155.  https://doi.org/10.1016/j.molcatb.2012.09.010CrossRefGoogle Scholar
  20. Gamerith C et al (2017) Enzymatic degradation of aromatic and aliphatic polyesters by P. Pastoris expressed cutinase 1 from thermobifida cellulosilytica. Front Microbiol 8:938.  https://doi.org/10.3389/fmicb.2017.00938CrossRefGoogle Scholar
  21. Gustini L et al (2015) Enzymatic synthesis and preliminary evaluation as coating of sorbitol-based, hydroxy-functional polyesters with controlled molecular weights. Eur Polym J 67:459–475.  https://doi.org/10.1016/j.eurpolymj.2014.12.025CrossRefGoogle Scholar
  22. Gustini L et al (2016a) Green and selective polycondensation methods toward linear sorbitol-based polyesters: enzymatic versus organic and metal-based catalysis. ChemSusChem 9:1–12.  https://doi.org/10.1002/cssc.20160062CrossRefGoogle Scholar
  23. Gustini L et al (2016b) Sustainable coatings from bio-based, enzymatically synthesized polyesters with enhanced functionalities. Polym Chem 7(43):6586.  https://doi.org/10.1039/c6py01339bCrossRefGoogle Scholar
  24. Hanefeld U et al (2009) Understanding enzyme immobilisation. Chem Soc Rev 38:453–468.  https://doi.org/10.1039/B711564BCrossRefGoogle Scholar
  25. Japu C et al (2015) Copolyesters made from 1,4-butanediol, sebacic acid and D-glucose by melt and enzymatic polycondensation. Biomacromolecules 16:868–879.  https://doi.org/10.1021/bm501771eCrossRefGoogle Scholar
  26. Jbeily M et al (2014) Enzymatically synthesized polyesters with pendent OH groups as macroinitiators for the preparation of well-defined graft copolymers by atom transfer radical polymerization. Polym Int 63:894–901.  https://doi.org/10.1002/pi.4676CrossRefGoogle Scholar
  27. Jiang Y et al (2013) Enzyme-catalyzed synthesis of unsaturated aliphatic polyesters based on green monomers from renewable resources. Biomol Ther 3:461–480.  https://doi.org/10.3390/biom3030461CrossRefGoogle Scholar
  28. Jiang Y et al (2014a) Fully biobased unsaturated aliphatic polyesters from renewable resources: enzymatic synthesis, characterization, and properties. Macromol Chem Phys 215:2185–2197.  https://doi.org/10.1002/macp.201400164CrossRefGoogle Scholar
  29. Jiang Y et al (2014b) Enzymatic synthesis of biobased polyesters using 2,5-bis(hydroxymethyl)furan as the building block. Biomacromolecules 15:2482–2493.  https://doi.org/10.1021/bm500340wCrossRefGoogle Scholar
  30. Jiang Y et al (2015a) Environmentally benign synthesis of saturated and unsaturated aliphatic polyesters via enzymatic polymerization of biobased monomers derived from renewable resources. Polym Chem 6:5451.  https://doi.org/10.1039/c5py00660kCrossRefGoogle Scholar
  31. Jiang Y et al (2015b) A biocatalytic approach towards sustainable furanic–aliphatic polyesters. Polym Chem 6:5198.  https://doi.org/10.1039/c5py00629eCrossRefGoogle Scholar
  32. Kanelli M et al (2014) Production of biodegradable polyesters via enzymatic polymerization and solid state finishing. J Appl Polym Sci 131:40820.  https://doi.org/10.1002/app.40820CrossRefGoogle Scholar
  33. Kobayashi S (2010) Lipase-catalyzed polyester synthesis—a green polymer chemistry. Proc Jpn Acad, Ser B 86:338–365.  https://doi.org/10.2183/pjab.86.338CrossRefGoogle Scholar
  34. Morales-Huerta JC et al (2017) A green strategy for the synthesis of poly(ethylene succinate) and its copolyesters via enzymatic ring opening polymerization. Eur Polym J 95:514–519.  https://doi.org/10.1016/j.eurpolymj.2017.08.043CrossRefGoogle Scholar
  35. Nameer S et al (2017) One-pot enzyme-catalyzed synthesis of dual functional polyester macromers towards surface active hydrophobic films. RSC Adv 7:50294.  https://doi.org/10.1039/c7ra09828fCrossRefGoogle Scholar
  36. Nguyen HD et al (2016) Highly branched bio-based unsaturated polyesters by enzymatic polymerization. Polymers 8:363.  https://doi.org/10.3390/polym8100363CrossRefGoogle Scholar
  37. Pellis A et al (2015) Towards feasible and scalable solvent-free enzymatic polycondensations: integrating robust biocatalysts with thin film reactions. Green Chem 17:1756–1766.  https://doi.org/10.1039/C4GC02289KCrossRefGoogle Scholar
  38. Pellis A et al (2016a) The closure of the cycle: enzymatic synthesis and functionalization of bio-based polyesters. Trends Biotechnol 34:316–328.  https://doi.org/10.1016/j.tibtech.2015.12.009CrossRefGoogle Scholar
  39. Pellis A et al (2016b) Ultrasound-enhanced enzymatic hydrolysis of poly (ethylene terephthalate). Bioresour Technol 218:1298–1302.  https://doi.org/10.1016/j.biortech.2016.07.106CrossRefGoogle Scholar
  40. Pellis A et al (2016c) Renewable building blocks for sustainable polyesters: new biotechnological routes for greener plastics. Polym Int 65:861–871.  https://doi.org/10.1002/pi.5087CrossRefGoogle Scholar
  41. Pellis A et al (2016d) Enlarging the tools for efficient enzymatic polycondensation: structural and catalytic features of cutinase 1 from Thermobifida cellulosilytica. Cat Sci Technol 6:3430.  https://doi.org/10.1039/c5cy01746gCrossRefGoogle Scholar
  42. Pellis A et al (2016e) On the effect of microwave energy on lipase-catalyzed polycondensation reactions. Molecules 21:1245.  https://doi.org/10.3390/molecules21091245CrossRefGoogle Scholar
  43. Pellis A et al (2016f) Exploring mild enzymatic sustainable routes for the synthesis of bio-degradable aromatic-aliphatic oligoesters. Biotechnol J 11:642–647.  https://doi.org/10.1002/biot.201500544CrossRefGoogle Scholar
  44. Pellis A et al (2017a) His-tag immobilization of cutinase 1 from Thermobifida cellulosilytica for solvent-free synthesis of polyesters. Biotechnol J 12:1700322.  https://doi.org/10.1002/biot.201700322CrossRefGoogle Scholar
  45. Pellis A et al (2017b) Evolving biocatalysis to meet bioeconomy challenges and opportunities. New Biotechnol 40(Pt A):154–169.  https://doi.org/10.1016/j.nbt.2017.07.005CrossRefGoogle Scholar
  46. Pellis A et al (2017c) Fully renewable polyesters via polycondensation catalyzed by Thermobifida cellulosilytica cutinase 1: an integrated approach. Green Chem 19:490.  https://doi.org/10.1039/c6gc02142eCrossRefGoogle Scholar
  47. Roberts T, Friebel S (2016) Itaconic acid—a versatile building block for renewable polyesters with enhanced functionality. Green Chem 18:2922–2934.  https://doi.org/10.1039/C6GC00605ACrossRefGoogle Scholar
  48. Semlitsch S et al (2016) Enzymatic catalysis as a versatile tool for the synthesis of multifunctional, bio-based oligoester resins. Green Chem 18(7):1923–1929.  https://doi.org/10.1039/c5gc02597dCrossRefGoogle Scholar
  49. Torron S et al (2014) Polymer thermosets from multifunctional polyester resins based on renewable monomers. Macromol Chem Phys 215:2198–2206.  https://doi.org/10.1002/macp.201400192CrossRefGoogle Scholar
  50. Torron S et al (2016) Biocatalytic synthesis of epoxy resins from fatty acids as a versatile route for the formation of polymer thermosets with tunable properties. Biomacromolecules 17(12):4003–4010.  https://doi.org/10.1021/acs.biomac.6b01383CrossRefGoogle Scholar
  51. Uyama H et al (1999) Regioselective polymerization of divinyl sebacate and triols using lipase catalyst. Macromol Rapid Commun 20:171–174.  https://doi.org/10.1002/(SICI)1521-3927(19990401)20:4<171::AID-MARC171>3.0.CO;2-2CrossRefGoogle Scholar
  52. Uyama H et al (2001) Regioselectivity control in lipase-catalyzed polymerization of divinyl sebacate and triols. Macromol Biosci 1:40–44.  https://doi.org/10.1002/1616-5195(200101)1:1<40::AID-MABI40>3.0.CO;2-TCrossRefGoogle Scholar
  53. Vastano M et al (2017) Enzymatic production of clickable and PEGylated recombinant polyhydroxyalkanoates. Green Chem 19:5494–5504.  https://doi.org/10.1039/C7GC01872JCrossRefGoogle Scholar
  54. Weinberger S et al (2017a) Enzymatic surface hydrolysis of poly(ethylene furanoate) thin films of various crystallinities. Green Chem 19(22):5381–5384.  https://doi.org/10.1039/C7GC02905ECrossRefGoogle Scholar
  55. Weinberger S et al (2017b) Enzymatic degradation of poly(ethylene 2, 5-furanoate) powders and amorphous films. Catalysts 7:318.  https://doi.org/10.3390/catal7110318CrossRefGoogle Scholar
  56. Wersig T et al (2017) Poly(glycerol adipate)—indomethacin drug conjugates—synthesis and in vitro characterization. Int J Pharm 531:225–234.  https://doi.org/10.1016/j.ijpharm.2017.08.093CrossRefGoogle Scholar
  57. Wu C et al (2013) Enzymatic synthesis of poly(e-caprolactone) in monocationic and dicationic ionic liquids. Biotechnol Lett 35:879–885.  https://doi.org/10.1007/s10529-013-1160-3CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alessandro Pellis
    • 1
    Email author
  • Gibson S. Nyanhongo
    • 2
  • Thomas J. Farmer
    • 1
  1. 1.Department of ChemistryUniversity of York, Green Chemistry Centre of ExcellenceYorkUK
  2. 2.Institute of Environmental BiotechnologyUniversity of Natural Resources and Life Sciences, ViennaTullnAustria

Personalised recommendations