Advertisement

Biorefinery pp 313-349 | Cite as

Biogas: Perspectives of an Old Technology

  • Xavier FlotatsEmail author
Chapter

Abstract

Anaerobic digestion is a key process in any sustainable organic waste management strategy and wastewater treatment process. It has proved to be one of the most effective methods for the mitigation of greenhouse gases emissions, contributing to the production of renewable energy and enabling the application of nutrient recovery processes. Biogas produced is a renewable and flexible fuel and able to cover heat and electricity and transport energy demands. Its upgrading and injection into the natural gas grid favour its use where efficiencies are the highest, even as a resource for the chemical industry, integrating either geographical distributed production or consumption. In spite of the multiple advantages, current economics is very dependent on energy prices and on the given government policy in areas such as regional development, waste management, renewable energy or climate change. In a context of a bio-based economy society, anaerobic digestion can also contribute to the production of carboxylates, which can be recovered for the synthesis of more complex chemicals, with higher economic value than biogas, maintaining the suitability of the process for the recovery of nutrients and of the remaining energy from the substrate. This flexibility confers a wide range of added value products and application areas to the anaerobic digestion process.

Keywords

Biogas Anaerobic digestion Bioenergy Bioeconomy Carboxylates Biorefinery 

References

  1. Acosta N, De Vrieze J (2018) Anaerobic digestion as key technology in the bio-based economy. In: Stams A, Sousa D (eds) Biogenesis of hydrocarbons. Handbook of hydrocarbon and lipid microbiology. Springer, ChamGoogle Scholar
  2. ADEME (2018) A 100% renewable gas mix in 2050? Study summary Joint study of ADEME, GrDF and GRTgaz, Angers (France), February 2018. http://www.ademe.fr/en/a-100-renewable-gas-mix-in-2050. Accessed 4 Apr 2018
  3. Adler P, Billig E, Brosowski A, Daniel-Gromke J, Falke I, Fischer E, Grope J, Holzhammer U, Postel J, Schnutenhaus J, Stecher K, Szomszed G, Trommler M, Urban W (2014) Leitfaden Biogasaufbereitung und–einspeisung (Guideline biogas treatment and feeding). Fachagentur Nachwachsende Rohstoffe e.V. (FNR), Gulzow-PruzenGoogle Scholar
  4. Affes R, Palatsi J, Flotats X, Carrère H, Steyer JP, Battimelli A (2013) Saponification pretreatment and solids recirculation as a new anaerobic process for the treatment of slaughterhouse waste. Bioresour Technol 131:460–467CrossRefGoogle Scholar
  5. Ahring BK, Biswas R, Ahamed A, Teller PJ, Uellendahl H (2015) Making lignin accessible for anaerobic digestion by wet-explosion pretreatment. Bioresour Technol 175:182–188CrossRefGoogle Scholar
  6. Ahring BK, Traverso JJ, Murali N, Srinivas K (2016) Continuous fermentation of clarified corn Stover hydrolysate for the production of lactic acid at high yield and productivity. Biochem Eng J 109:162–169CrossRefGoogle Scholar
  7. Al Seadi T (2001) Good practice in quality management of AD residues from biogas production. Report made for the International Energy Agency, Task 24-Energy from Biological Conversion of Organic Waste. IEA Bioenergy and AEA Technology Environment, Oxfordshire, United KingdomGoogle Scholar
  8. Al Seadi T, Rutz D, Prassl H, Köttner M, Finsterwalder T, Volk S, Janssen R (2008) Biogas handbook. University of Southern Denmark, Esbjerg. http://www.lemvigbiogas.com/BiogasHandbook.pdf. Accessed 20 Mar 2018
  9. Angelidaki I, Ellegaard L (2003) Codigestion of manure and organic wastes in centralized biogas plants; status and future trends. Appl Biochem Biotechnol 109:95–105CrossRefGoogle Scholar
  10. Angenent LT, Sung S, Raskin L (2002) Methanogenic population dynamics during startup of a full-scale anaerobic sequencing batch reactor treating swine waste. Water Res 36:4648–4654CrossRefGoogle Scholar
  11. Aydin S, Yesil H, Tugtas AE (2018) Recovery of mixed volatile fatty acids from anaerobically fermented organic wastes by vapor permeation membrane contactors. Bioresour Technol 250:548–555CrossRefGoogle Scholar
  12. Baba Y, Tada C, Watanabe R, Fukuda Y, Chida N, Nakai Y (2013) Anaerobic digestion of crude glycerol from biodiesel manufacturing using a large-scale pilot plant: methane production and application of digested sludge as fertilizer. Bioresour Technol 140:342–348CrossRefGoogle Scholar
  13. Bailón L, Hinge J (2012) Biogas and bio-syngas upgrading. Danish Technological Institute, TaastrupGoogle Scholar
  14. Bastidas-Oyanedel JR, Schmidt JE (2018) Increasing profits in food waste biorefinery—a techno-economic analysis. Energies 11:1551CrossRefGoogle Scholar
  15. Bastidas-Oyanedel JR, Mohd-Zaki Z, Zeng RJ, Bernet N, Pratt S, Steyer JP, Batstone DJ (2012) Gas controlled hydrogen fermentation. Bioresour Technol 110:503–509CrossRefGoogle Scholar
  16. Bastidas-Oyanedel JR, Bonk F, Thomsen MH, Schmidt JE (2015) Dark fermentation biorefinery in the present and future (bio)chemical industry. Rev Environ Sci Biotechnol 14:473–498CrossRefGoogle Scholar
  17. Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi SV, Pavlostathis SG, Rozzi A, Sanders WTM, Siegrist H, Vavilin VA (2002) Anaerobic digestion model no.1 (ADM1). Scientific and Technical Report No. 13. IWA, LondonGoogle Scholar
  18. Bayrakdar A, Sürmeli RÖ, Çalli B (2018) Anaerobic digestion of chicken manure by a leach-bed process coupled with side-stream membrane ammonia separation. Bioresour Technol 258:41–47CrossRefGoogle Scholar
  19. Beil M, Beyrich W (2013) Biogas upgrading to biomethane. In: Wellinger A, Murphy J, Baxter D (eds) The biogas handbook: science, production and applications, Woodhead publishing series in energy number, vol 52. Woodhead, Cambridge, pp 342–377CrossRefGoogle Scholar
  20. Biswas R, Uellendahl H, Ahring BK (2015) Wet explosion: a universal and eficient pre-treatment process for lignocellulosic biorefineries. Bioenergy Res 8:1101–1116CrossRefGoogle Scholar
  21. Bonk F, Bastidas-Oyanedel JR, Yousef AF, Schmidt JE (2017) Exploring the selective lactic acid production from food waste in uncontrolled pH mixed culture fermentations using different reactor configurations. Bioresour Technol 238:416–424CrossRefGoogle Scholar
  22. Bonmatí A, Flotats X (2003a) Air stripping of ammonia from pig slurry: characterization and feasibility as a pre- or post-treatment to mesophilic anaerobic digestion. Waste Manag 23:261–272CrossRefGoogle Scholar
  23. Bonmatí A, Flotats X (2003b) Pig slurry concentration by vacuum evaporation: influence of previous mesophilic anaerobic digestion process. J Air Waste Manage Assoc 53:21–31CrossRefGoogle Scholar
  24. Bonmatí A, Flotats X, Mateu L, Campos E (2001) Study of thermal hydrolysis as a pre-treatment to mesophilic anaerobic digestion of pig slurry. Water Sci Technol 44:109–116CrossRefGoogle Scholar
  25. Buelens LC, Galvita VV, Poelman H, Detavernier C, Marin GB (2016) Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier’s principle. Science 354:449–452CrossRefGoogle Scholar
  26. Cagnetta C, Coma M, Vlaeminck SE, Rabaey K (2016) Production of carboxylates from high rate activated sludge through fermentation. Bioresour Technol 217:165–172CrossRefGoogle Scholar
  27. Carballa M, Duran C, Hospido A (2011) Should we pretreat solid waste prior to anaerobic digestion? An assessment of its environmental cost. Environ Sci Technol 45:10306–10314CrossRefGoogle Scholar
  28. Carlson M, Lagerkvist A, Morgan-Sagastume F (2012) The effects of substrate pre-treatment on anaerobic digestion systems: a review. Waste Manag 32:1634–1650CrossRefGoogle Scholar
  29. Cavaleiro AJ, Pereira MA, Guedes AP, Stams AJM, Alves MA, Sousa DZ (2016) Conversion of Cn-unsaturated into Cn-2-saturated LCFA can occur uncoupled from methanogenesis in anaerobic bioreactors. Environ Sci Technol 50:3082–3090CrossRefGoogle Scholar
  30. Cecchi F, Traverso P, Pavan P, Bolzonella D, Innocenti L (2003) Characteristics of the OFMSW and behaviour of the anaerobic digestion process. In: Mata-Alvarez J (ed) Biomethanization of the organic fraction of municipal solid wastes. IWA, London, pp 141–179Google Scholar
  31. Cerrillo M, Palatsi J, Comas J, Vicens J, Bonmatí A (2015) Struvite precipitation as a technology to be integrated in a manure anaerobic digestion treatment plant—removal efficiency, crystal characterization and agricultural assessment. J Chem Technol Biotechnol 90:1135–1143CrossRefGoogle Scholar
  32. Chang S, Li J, Liu F (2011) Continuous biohydrogen production from diluted molasses in an anaerobic contact reactor. Front Environ Sci Eng China 5:140–148CrossRefGoogle Scholar
  33. Chen YR, Hashimoto AG (1978) Kinetics of methane fermentation. Biotechnol Bioeng Symp 8:269–282Google Scholar
  34. Chen Q, Liu T (2017) Biogas system in rural China: upgrading from decentralized to centralized? Renew Sustain Energy Rev 78:933–944CrossRefGoogle Scholar
  35. Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064CrossRefGoogle Scholar
  36. Chen L, Zhao L, Ren C, Wang F (2012) The progress and prospects of rural biogas production in China. Energy Policy 51:58–63CrossRefGoogle Scholar
  37. Chernicharo CAL (2007) Anaerobic reactors, Biological wastewater treatment series, vol 4. IWA, LondonGoogle Scholar
  38. Chiumenti A, da Borso F, Chiumenti R, Teri F, Segantin P (2013) Treatment of digestate from a co-digestion biogas plant by means of vacuum evaporation: tests for process optimization and environmental sustainability. Waste Manag 33:1339–1344CrossRefGoogle Scholar
  39. De Vrieze J, Smet D, Klok J, Colsen J, Angenent LT, Vlaeminck SE (2016) Thermophilic sludge digestion improves energy balance and nutrient recovery potential in full-scale municipal wastewater treatment plants. Bioresour Technol 218:1237–1245CrossRefGoogle Scholar
  40. Deublein D, Steinhauser A (2008) Biogas from waste and renewable resources: an introduction. Wiley-VCH editors Verlag GmbH, WeinheimCrossRefGoogle Scholar
  41. Domenech PL, Flotats X (1997) A simplified mathematical model for an upflow anaerobic fixed film reactor under transient loading. Hung J Ind Chem 25:315–320. http://hdl.handle.net/2117/6744. Accessed 6 Sept 2018Google Scholar
  42. Donoso-Bravo A, Rosenkranz F, Valdivia V, Torrijos M, Ruiz-Filippi G, Chamy R (2009) Anaerobic sequencing batch reactor as an alternative for the biological treatment of wine distillery effluents. Water Sci Technol 60:1155–1160CrossRefGoogle Scholar
  43. Duncan J, Bokhary A, Fatehi P, Kong F, Lin H, Liao B (2017) Thermophilic membrane bioreactors: a review. Bioresour Technol 243:1180–1193CrossRefGoogle Scholar
  44. EBA (2016) Biomethane in transport. European Biogas Association, BrusselsGoogle Scholar
  45. Edenhofer O, Pichs-Madruga R, Sokona Y, Kadner S, Minx JC, Brunner S, Agrawala S, Baiocchi G, Bashmakov IA, Blanco G, Broome J, Bruckner T, Bustamante M, Clarke L, Conte Grand M, Creutzig F, Cruz-Núñez X, Dhakal S, Dubash NK, Eickemeier P, Farahani E, Fischedick M, Fleurbaey M, Gerlagh R, Gómez-Echeverri L, Gupta S, Harnisch J, Jiang K, Jotzo F, Kartha S, Klasen S, Kolstad C, Krey V, Kunreuther H, Lucon O, Masera O, Mulugetta Y, Norgaard RB, Patt A, Ravindranath NH, Riahi K, Roy J, Sagar A, Schaeffer R, Schlömer S, Seto KC, Seyboth K, Sims R, Smith P, Somanathan E, Stavins R, von Stechow C, Sterner T, Sugiyama T, Suh S, Ürge-Vorsatz D, Urama K, Venables A, Victor DG, Weber E, Zhou D, Zou J, Zwickel T (2014) Technical summary. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, von Stechow C, Zwickel T, Minx JC (eds) Climate change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New YorkGoogle Scholar
  46. Edwards J, Othman M, Burn S (2015) A review of policy drivers and barriers for the use of anaerobic digestion in Europe, the United States and Australia. Renew Sustain Energy Rev 52:815–828CrossRefGoogle Scholar
  47. Edwiges T, Mayer B, Frare L, Lins L, Triolo JM, Flotats X, Sarolli M (2018) Influence of chemical composition on biochemical methane potential of fruit and vegetable waste. Waste Manag 71:618–625CrossRefGoogle Scholar
  48. EPA (2014) Biogas opportunities roadmap. Voluntary Actions to Reduce Methane Emissions and Increase Energy Independence Joint USDA, EPA and DOE Report, August 2014. https://www.epa.gov/sites/production/files/2015-12/documents/biogas-roadmap.pdf. Accessed 16 Jul 2018
  49. EPA (2018) Market opportunities for biogas recovery systems at U.S. livestock facilities. AgSTAR program, Report EPA-430-R-18-006, June 2018Google Scholar
  50. EurObserv’ER (2017) Biogas Barometer. https://www.eurobserv-er.org/biogas-barometer-2017/. Accessed 2 Apr 2018
  51. European Parliament (2017) Report on the proposal for a regulation of the European Parliament and of the Council laying down rules on the making available on the market of CE marked fertilising products and amending regulations (EC) no 1069/2009 and (EC) no 1107/2009. http://www.europarl.europa.eu/sides/getDoc.do?type=REPORT&reference=A8-2017-0270&language=EN. Accessed 12 Apr 2018
  52. EUROSTAT (2018a) Electricity price statistics. http://ec.europa.eu/eurostat/statistics-explained/index.php?title=Electricity_price_statistics. Accessed 24 July 2018
  53. EUROSTAT (2018b) Natural gas price statistics. http://ec.europa.eu/eurostat/statistics-explained/index.php/Natural_gas_price_statistics. Accessed 23 July 2018
  54. Fernández B, Poirrier P, Chamy R (2001) Effect of inoculum-substrate ratio on the start-up of solid waste anaerobic digesters. Water Sci Technol 44:103–108CrossRefGoogle Scholar
  55. Flotats X (2018) Implantación de la digestión anaerobia en el sector agropecuario (Implementation of anaerobic digestion in the agricultural sector). In: Chiva S, Berlanga JG, Martínez R, Climent J (eds) Depuración de aguas residuales: digestión anaerobia. Publicacions de la Universitat Jaume I, Castellón, pp 44–66.  https://doi.org/10.6035/UJI.FACSA.2018.2CrossRefGoogle Scholar
  56. Flotats X, Gibert V (2002) Mas el Cros biogas plant. Evaluation of 18 years in operation. In: Kalyuzhnyi S (ed) Proceedings of the 7th FAO/SREN workshop on “Anaerobic digestion for sustainability in waste (water) treatment and re-use”, vol 1. Moscow State University, Moscow, pp 172–180Google Scholar
  57. Flotats X, Sarquella L (2008) Producció de biogàs per codigestió anaeròbia (Biogas production by codigestion). Col·lecció Quadern Pràctic, número 1. Institut Català d’Energia, Barcelona. http://hdl.handle.net/2117/2265. Accessed 24 Apr 2018
  58. Flotats X, Bonmatí A, Fernández B, Magrí A (2009) Manure treatment technologies: on-farm versus centralized strategies. NE Spain as case study. Bioresour Technol 100:5519–5526CrossRefGoogle Scholar
  59. Flotats X, Foged HL, Bonmatí A, Palatsi J, Magrí A, Schelde KM (2012) Manure processing technologies. Technical Report no. II concerning “Manure Processing Activities in Europe” to the European Commission, Directorate-General Environment. http://hdl.handle.net/2117/18944. Accessed 4 June 2018
  60. Flotats X, Fernández B, Palatsi J (2013) Characterization of the anaerobic digestion of proteins containing animal by-products, using simultaneous batch experiments. In: Proceedings of the 13th World Congress on Anaerobic Digestion (AD13), Santiago de Compostela, 25–28 June 2013. http://hdl.handle.net/2117/97998. Accessed 15 May 2018
  61. Flotats X, Bonmatí A, Fernández B, Sales D, Aymerich E, Irizar J, Palatsi J, Romero LI, Pérez M, Vicent T, Font X (2016) Ingeniería y aspectos técnicos de la digestión anaeróbica (Engineering and technical aspects of anaerobic digestion). Volume II.4, “De Residuo a Recurso, el camino hacia la sostenibilidad” books series. Spanish network of Composting, Ed Mundi-Prensa, MadridGoogle Scholar
  62. Foged HL, Flotats X, Bonmatí A (2012a) Future trends on manure processing activities in Europe. Technical Report no. V concerning “Manure processing activities in Europe” to the European Commission, Directorate-General Environment. http://hdl.handle.net/2117/18948. Accessed 4 June 2018
  63. Foged HL, Flotats X, Bonmatí A, Palatsi J, Magrí A (2012b) End and by-products from livestock manure processing - general types, chemical composition, fertilising quality and feasibility for marketing. Technical Report no. III concerning “Manure processing activities in Europe” to the European Commission, Directorate-General Environment. http://hdl.handle.net/2117/18945. Accessed 22 May 2018
  64. Foged HL, Flotats X, Bonmatí A, Schelde KM, Palatsi J, Magrí A, Zonta ZJ (2012c) Assessment of economic feasibility and environmental performance of manure processing technologies. Technical Report no. IV concerning “Manure Processing Activities in Europe” to the European Commission, Directorate-General Environment. http://hdl.handle.net/2117/18947. Accessed 7 June 2018
  65. García-González MCC, Vanotti MBB (2015) Recovery of ammonia from swine manure using gas-permeable membranes: effect of waste strength and pH. Waste Manag 38:455–461CrossRefGoogle Scholar
  66. Garfí M, Martí-Herrero J, Garwood A, Ferrer I (2016) Household anaerobic digesters for biogas production in Latin America: a review. Renew Sustain Energy Rev 60:599–614CrossRefGoogle Scholar
  67. Gavala HN, Yenal U, Skiadas IV, Westermann P, Ahring BK (2003) Mesophilic and thermophilic anaerobic digestion of primary and secondary sludge. Effect of pre-treatment at elevated temperature. Water Res 37:4561–4457CrossRefGoogle Scholar
  68. Ge HQ, Jensen PD, Batstone DJ (2011) Temperature phased anaerobic digestion increases apparent hydrolysis rate for waste activated sludge. Water Res 45:1597–1606CrossRefGoogle Scholar
  69. Giuntoli J, Agostini A, Edwards R, Marelli L (2015) Solid and gaseous bioenergy pathways: input values and GHG emissions. JRC Science and Policy Reports, European Comission, Report EUR 27215.  https://doi.org/10.2790/299090
  70. Gonzalez-Cabaleiro R, Lema JM, Rodriguez J, Kleerebezem R (2013) Linking thermodynamics and kinetics to assess pathway reversibility in anaerobic bioprocesses. Energ Environ Sci 6:3780–3789CrossRefGoogle Scholar
  71. Gosens J, Lu Y, He G, Bluemling B, Beckers TAM (2013) Sustainability effects of household-scale biogas in rural China. Energy Policy 54:273–287CrossRefGoogle Scholar
  72. Guwy AJ, Dinsdale RM, Kim JR, Massanet-Nicolau J, Premier G (2011) Fermentative biohydrogen production systems integration. Bioresour Technol 102:8534–8542CrossRefGoogle Scholar
  73. Hartmann S, Wirth B, Niebaum N, Döhler H, Keymer U, Reinhold G (2012) Economics. In: Fachagentur Nachwachsende Rohstoffe e. V. (FNR) (ed) Guide to biogas. From production to use. Abt. Öffentlichkeitsarbeit, Gülzow, pp 159–178Google Scholar
  74. Hashimoto AG (1986) Ammonia inhibition of methanogenesis from cattle wastes. Agric Wastes 17:241–261CrossRefGoogle Scholar
  75. Hattori S (2008) Syntrophic acetate-oxidizing microbes in methanogenic environments. Microbes Environ 23:118–127CrossRefGoogle Scholar
  76. Hjort-Gregersen K (2002) Development and implementation of the Danish centralised biogas concept—financial aspects. In: van Ierland EC, Lansink AO (eds) Economics of sustainable energy in agriculture. Kluwer Academic, Dordrecht, pp 177–188Google Scholar
  77. Holliger C, Alves M, Andrade D, Angelidaki I et al (2016) Towards a standardization of biomethane potential tests. Water Sci Technol 74:2515–2522CrossRefGoogle Scholar
  78. Hou Y, Velthof GL, Case SDC, Oelofse M, Grignani M, Balsari P, Zavattaro L, Gioelli F, Bernal MP, Fangueiro D, Trindade H, Jensen LS, Oenemab O (2018) Stakeholder perceptions of manure treatment technologies in Denmark, Italy, the Netherlands and Spain. J Clean Prod 172:1620–1630CrossRefGoogle Scholar
  79. Hulshoff Pol LW, De Castro Lopes SI, Lettinga G, Lens PNL (2004) Anaerobic sludge granulation. Water Res 38:1376–1389CrossRefGoogle Scholar
  80. Ijmker HM, Gramblicka M, Kersten SRA, van der Ham AGJ, Schuur B (2014) Acetic acid extraction from aqueous solutions using fatty acids. Sep Purif Technol 125:256–263CrossRefGoogle Scholar
  81. IRENA (2018) Biogas for road vehicles: technology brief. International Renewable Energy Agency, Abu Dhabi. https://www.irena.org. Accessed March 2018Google Scholar
  82. Jain S, Jain S, Wolf IT, Lee J, Tong YW (2015) A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste. Renew Sustain Energy Rev 52:142–154CrossRefGoogle Scholar
  83. Johansen A, Nielsen HB, Hansen CM, Andreasen C, Carlsgart J, Hauggard-Nielsen H, Roepstorff A (2013) Survival of weed seeds and animal parasites as affected by anaerobic digestion at meso- and thermophilic conditions. Waste Manag 33:807–812CrossRefGoogle Scholar
  84. Jones RJ, Massanet-Nicolau J, Guwy A, Premier GC, Dinsdale RM, Reilly M (2015) Removal and recovery of inhibitory volatile fatty acids from mixed acid fermentations by conventional electrodialysis. Bioresour Technol 189:279–284CrossRefGoogle Scholar
  85. Jones RJ, Massanet-Nicolau J, Mulder MJJ, Premier GC, Dinsdale R, Guwy A (2017) Enhanced volatile fatty acid production via the batch electrodialysis of a dark fermentation fermenter continually fed with sucrose. Proceedings of the 15th World Congress on Anaerobic Digestion, Beijing (China), 17–20 October 2017, pp 661–664Google Scholar
  86. Jurado E, Skiadas IV, Gavala HN (2013) Enhanced methane productivity from manure fibers by aqueous ammonia soaking pretreatment. Appl Energy 109:104–111CrossRefGoogle Scholar
  87. Juznic-Zonta Z, Alves MM, Flotats X, Palatsi J (2013) Modelling inhibitory effects of long chain fatty acids in the anaerobic digestion process. Water Res 47:1369–1380CrossRefGoogle Scholar
  88. Kafle GK, Kim SH, Sung KI (2013) Ensiling of fish industry waste for biogas poduction: a lab scale evaluation of biochemical methane potential (BMP) and kinetics. Bioresour Technol 127:326–336CrossRefGoogle Scholar
  89. Kennedy KJ, Droste RL (1991) Anaerobic wastewater treatment in downflow stationary fixed film reactors. Water Sci Technol 24:157–177CrossRefGoogle Scholar
  90. Kondusamy D, Kalamdhad AS (2014) Pre-treatment and anaerobic digestion of food waste for high rate methane production—a review. J Environ Chem Eng 2:1821–1830CrossRefGoogle Scholar
  91. Laureni M, Palatsi J, Llovera M, Bonmatí A (2013) Influence of pig slurry characteristics on ammonia stripping efficiencies and quality of the recovered ammonium-sulfate solution. J Chem Technol Biotechnol 88:1654–1662CrossRefGoogle Scholar
  92. Lauterböck B, Ortner M, Haider R, Fuchs W (2012) Counteracting ammonia inhibition in anaerobic digestion by removal with a hollow fiber membrane contactor. Water Res 46:4861–4869CrossRefGoogle Scholar
  93. Lauterböck B, Moder K, Germ T, Fuchs W (2013) Impact of characteristic membrane parameters on the transfer rate of ammonia in membrane contactor application. Sep Purif Technol 116:327–334CrossRefGoogle Scholar
  94. Lauterböck B, Nikolausz M, Lv Z, Baumgartner M, Liebhard G, Fuchs W (2014) Improvement of anaerobic digestion performance by continuous nitrogen removal with a membrane contactor treating a substrate rich in ammonia and sulfide. Bioresour Technol 158:209–216CrossRefGoogle Scholar
  95. Lettinga G, van Velsen AFM, Hobma SW, de Zeeuw W, Klapwijk A (1980) Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnol Bioeng 22:699–734CrossRefGoogle Scholar
  96. Lin H, Peng W, Zhang M, Chen J, Hong H, Zhang Y (2013) A review on anaerobic membrane bioreactors: applications, membrane fouling and future perspectives. Desalination 314:169–188CrossRefGoogle Scholar
  97. Lorenz H, Fisher P, Schumacher B, Adler P (2013) Current EU-27 technical potential of organic waste streams for biogas and energy production. Waste Manag 33:2434–2448CrossRefGoogle Scholar
  98. Lukehurst C, Frost P, Al Seadi T (2010) Utilisation of digestate from biogas plants as biofertizer. Bioenergy Task 37—Energy from Biogas. IEA Bioenergy. http://task37.ieabioenergy.com/technical-brochures.html. Accessed 4 June 2018
  99. Luostarinen S, Luste S, Sillanpää M (2009) Increased biogas production at wastewater treatment plants through co-digestion of sewage sludge with grease trap sludge from a meat processing plant. Bioresour Technol 100:79–85CrossRefGoogle Scholar
  100. Maniatis K, Landälv I, Waldheim L, van den Heuvel E, Kalligeros S (2017) Final report: building up the future. Sub group on advanced biofuels, sustainable transport forum, European Commission. Publications Office of the European Union, March 2017Google Scholar
  101. Massé DI, Massé L, Croteau F (2003) The effect of temperature fluctuations on psychrophilic anaerobic sequencing batch reactors treating swine manure. Bioresour Technol 89:57–62CrossRefGoogle Scholar
  102. Miron Y, Zeeman G, van Lier JB, Lettinga G (2000) The role of sludge retention time in the hydrolysis and acidification of lipids, carbohydrates and proteins during digestion of primary sludge in CSTR systems. Water Res 34:1705–1713CrossRefGoogle Scholar
  103. Molinuevo-Salces B, Fernández-Varela R, Uellendahl H (2014) Key factors influencing the potential of catch crops for methane production. Environ Technol 35:1685–1694CrossRefGoogle Scholar
  104. Molinuevo-Salces B, Larsen SU, Ahring BK, Uellendahl H (2015) Biogas production from catch crops: increased yield by combined harvest of catch crops and straw and preservation by ensiling. Biomass Bioenergy 79:3–11CrossRefGoogle Scholar
  105. Möller K, Müller T (2012) Effects of anaerobic digestion on digestate nutrient availability and crop growth: a review. Eng Life Sci 12:242–257CrossRefGoogle Scholar
  106. Murphy J, Braun R, Weiland P, Wellinger A (2011) Biogas from energy crop digestion. Bioenergy Task 37—Energy from biogas. IEA Bioenergy. http://task37.ieabioenergy.com/technical-brochures.html. Accessed 18 May 2018
  107. Nagy D, Balogh P, Gabnai Z, Popp J, Oláh J, Bai A (2018) Economic analysis of pellet production in co-digestion biogas plants. Energies 11(5):1135CrossRefGoogle Scholar
  108. Nähle C (1991) The contact process for the anaerobic treatment of wastewater: technologies, design and experiences. Water Sci Technol 24:179–191CrossRefGoogle Scholar
  109. Neumann P, Pesante S, Venegas M, Vidal G (2016) Developments in pre-treatment methods to improve anaerobic digestion of sewage sludge. Rev Environ Sci Biotechnol 15:173–211CrossRefGoogle Scholar
  110. Neves L, Oliveira R, Alves MM (2006) Anaerobic co-digestion of coffee waste and sewage sludge. Waste Manag 26:176–181CrossRefGoogle Scholar
  111. Noguerol J, Rodríguez-Abalde A, Romero E, Flotats X (2012) Determination of chemical oxygen demand in heterogeneous solid or semisolid samples using a novel method combining solid dilutions as a preparation step followed by optimized closed reflux and colorimetric measurement. Anal Chem 84:5548–5555CrossRefGoogle Scholar
  112. Nzeteu CO, Trego AC, Abram F, O'Flaherty V (2018) Reproducible, high-yielding, biological caproate production from food waste using a single-phase anaerobic reactor system. Biotechnol Biofuels 11:108CrossRefGoogle Scholar
  113. Oenema O, Witzke HP, Klimont Z, Lesschen JP, Velthof GL (2009) Integrated assessment of promising measures to decrease nitrogen losses in agriculture in EU-27. Agric Ecosyst Environ 133:280–288CrossRefGoogle Scholar
  114. Örlygsson J, Houwen FP, Svensson BH (1995) Thermophilic anaerobic amino acid degradation: deamination rates and end product formation. Appl Microbiol Biotechnol 43:235–241CrossRefGoogle Scholar
  115. Ortiz-Cabrera MA, Nayak A, Flotats X (2018) Polyphenols removal in winery wastewater using an AnSBR. XIII Latin American Workshop and Symposium on Anaerobic Digestion (DAAL XIII), Medellin (Colombia), 21–24 October 2018Google Scholar
  116. Ozgun H, Dereli RK, Ersahin ME, Kinaci C, Spanjers H, van Lier JB (2013) A review of anaerobic membrane bioreactors for municipal wastewater treatment: integration options, limitations and expectations. Sep Purif Technol 118:89–104CrossRefGoogle Scholar
  117. Palatsi J, Campos-Pozuelo E, Torres M, Porras S, Flotats X (2005) Full-scale combination of anaerobic digestion and concentration by evaporation in Garrigues (Lleida, Spain): evaluation after 2 years of operation. In: Bernal MP, Moral R, Clemente R, Paredes C (eds) Proceedings of the International Conference of the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture, Murcia (Spain), October 2004, vol 2, pp 155–158Google Scholar
  118. Palatsi J, Laureni M, Andrés MV, Flotats X, Nielsen HB, Angelidaki I (2009) Strategies for recovering inhibition caused by long-chain fatty acids on anaerobic thermophilic biogas reactors. Bioresour Technol 100:4588–4596CrossRefGoogle Scholar
  119. Palatsi J, Illa J, Prenafeta-Boldu FX, Laureni M, Fernandez B, Angelidaki I, Flotats X (2010) Long-chain fatty acids inhibition and adaptation process in anaerobic thermophilic digestion: batch tests, microbial community structure and mathematical modeling. Bioresour Technol 101:2243–2251CrossRefGoogle Scholar
  120. Palatsi J, Affes R, Fernández B, Pereira A, Alves M, Flotats X (2012) Influence of adsorption and anaerobic granular sludge characteristics on long chain fatty acids inhibition process. Water Res 46:5268–5278CrossRefGoogle Scholar
  121. Pardo G, Moral R, del Prado A (2017) SIMSWASTE-AD–a modelling framework for the environmental assessment of agricultural waste management strategies: anaerobic digestion. Sci Total Environ 574:806–817CrossRefGoogle Scholar
  122. Passos F, Carretero J, Ferrer I (2015) Comparing pretreatment methods for improving microalgae anaerobic digestion: thermal, hydrothermal, microwave and ultrasound. Chem Eng J 279:667–672CrossRefGoogle Scholar
  123. Pereira MA, Pires OC, Mota M, Alves MM (2005) Anaerobic biodegradation of oleic and palmitic acids: evidence of mass transfer limitations caused by long chain fatty acids. Accumulation onto the anaerobic sludge. Biotechnol Bioeng 92:15–23CrossRefGoogle Scholar
  124. Pfau SF, Hagens JE, Dankbaar B (2017) Biogas between renewable energy and bio-economy policies—opportunities and constraints resulting from a dual role. Energy Sustain Soc 7:17CrossRefGoogle Scholar
  125. Poeschl M, Ward S, Owende P (2010a) Prospects for expanded utilization of biogas in Germany. Renew Sustain Energy Rev 14:1782–1797CrossRefGoogle Scholar
  126. Poeschl M, Ward S, Owende P (2010b) Evaluation of energy efficiency of various biogas production and utilization pathways. Appl Energy 87:3305–3321CrossRefGoogle Scholar
  127. Poeschl M, Ward S, Owende P (2012a) Environmental impacts of biogas deployment–part I: life cycle inventory for evaluation of production process emissions to air. J Clean Prod 24:168–183CrossRefGoogle Scholar
  128. Poeschl M, Ward S, Owende P (2012b) Environmental impacts of biogas deployment - part II: life cycle assessment of multiple production and utilization pathways. J Clean Prod 24:184–201CrossRefGoogle Scholar
  129. Powers WJ, van Horn HH, Wilkie AC, Wilcox CJ, Nordstedt RA (1999) Effects of anaerobic digestion and additives to effluent or cattle feed on odour and odorant concentrations. J Anim Sci 77:1412–1421CrossRefGoogle Scholar
  130. Ramsay IR (1997) Modelling and control of high-rate anaerobic wastewater treatment systems. PhD Thesis. Department of Chemical Engineering, University of Queensland, BrisbaneGoogle Scholar
  131. Ramsay IR, Pullammanappallil PC (2001) Protein degradation during anaerobic wastewater treatment: derivation of stoichiometry. Biodegradation 12:247–257CrossRefGoogle Scholar
  132. Rebecchi S, Pinelli D, Bertin L, Zama F, Fava F, Frascari D (2016) Volatile fatty acids recovery from the effluent of an acidogenic digestion process fed with grape pomace by adsorption on ion exchange resins. Chem Eng J 306:629–639CrossRefGoogle Scholar
  133. Rittmann BE, McCarty PL (2001) Environmental biotechnology: principles and applications. McGraw-Hill Book, New YorkGoogle Scholar
  134. Rodríguez J, Kleerebezem R, Lema JM, van Loosdrecht MCM (2006) Modeling product formation in anaerobic mixed culture fermentations. Biotechnol Bioeng 93:592–606CrossRefGoogle Scholar
  135. Rodriguez C, Alaswad A, Mooney J, Prescott T, Olabi AG (2015) Pre-treatment techniques used for anaerobic digestion of algae. Fuel Process Technol 138:765–779CrossRefGoogle Scholar
  136. Rodríguez-Abalde A, Fernández B, Silvestre G, Flotats X (2011) Effects of thermal pre-treatments on solid slaughterhouse waste methane potential. Waste Manag 31:1488–1493CrossRefGoogle Scholar
  137. Rodríguez-Abalde A, Gómez X, Blanco D, Cuetos MJ, Fernández B, Flotats X (2013) Study of thermal pre-treatment on anaerobic digestion of slaughterhouse waste by TGA-MS and FTIR spectroscopy. Waste Manag Res 31:1195–1202CrossRefGoogle Scholar
  138. Romero-Güiza MS, Tait S, Astals S, del Valle-Zermeño R, Martínez M, Mata-Alvarez J, Chimenos JM (2015) Reagent use efficiency with removal of nitrogen from pig slurry via struvite: a study on magnesium oxide and related by-products. Water Res 84:286–294CrossRefGoogle Scholar
  139. Ruiz B, de Benito A, Rivera JD, Flotats X (2016) Assessment of different pre-treatment methods for the removal of limonene in citrus waste and their effect on methane potential and methane production rate. Waste Manag Res 34:1249–1257CrossRefGoogle Scholar
  140. Ruiz-Sánchez J, López A, Riau V, Prenafeta-Boldú FX, Fernández B, Flotats X (2017) Biogas production from N-rich wastes: SAOB-HM enriched digester versus hydrophobic membrane assisted digester. Proceedings of the 15th World Congress on Anaerobic Digestion, Beijing (China), 17–20 October 2017, pp 695–698Google Scholar
  141. Ruiz-Sánchez J, Campanaro S, Guivernau M, Fernández B, Prenafeta-Boldú FX (2018) Effect of ammonia on the active microbiome and metagenome from stable full-scale digesters. Bioresour Technol 250:513–522CrossRefGoogle Scholar
  142. Scarlat N, Dallemand JF, Fahl F (2018) Biogas: developments and perspectives in Europe. Renew Energy 129:457–472CrossRefGoogle Scholar
  143. Schnürer A, Nordberg A (2008) Ammonia, a selective agent for methane production by syntrophic acetate oxidation at mesophilic temperature. Water Sci Technol 57:735–740CrossRefGoogle Scholar
  144. Schnürer A, Houwen FP, Svensson BH (1994) Mesophilic syntrophic acetate oxidation during methane formation by a triculture at high ammonium concentration. Arch Microbiol 162:70–74CrossRefGoogle Scholar
  145. Silvestre G, Rodriguez-Abalde A, Fernández B, Flotats X, Bonmatí A (2011) Biomass adaptation over anaerobic co-digestion of sewage sludge and trapped grease waste. Bioresour Technol 102:6830–6836CrossRefGoogle Scholar
  146. Simioni M, Kentish SE, Stevens GW (2011) Polymeric alternatives to teflon for membrane stripping. Energy Procedia 4:659–665CrossRefGoogle Scholar
  147. Singhania RR, Patel AK, Christophe G, Fontanille P, Larroche C (2013) Biological upgrading of volatile fatty acids, key intermediates for the valorization of biowaste through dark anaerobic fermentation. Bioresour Technol 145:166–174CrossRefGoogle Scholar
  148. Skiadas IV, Gavala HN, Lyberatos G (2000) Modelling of the periodic anaerobic baffled reactor (PABR) based on the retailing factor concept. Water Res 34:3691–3905CrossRefGoogle Scholar
  149. Smil V (2011) Nitrogen cycle and world food production. World Agr 2:9–13Google Scholar
  150. Spirito CM, Richter H, Rabaey K, Stams AJM, Angenent LT (2014) Chain elongation in anaerobic reactor microbiomes to recover resources from waste. Curr Opin Biotechnol 27:115–122CrossRefGoogle Scholar
  151. Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, de Haan C (2006) Livestock long shadow; environmental issues and options. Food and Agriculture organization of the United Nations, FAO Publishing Management Service, RomeGoogle Scholar
  152. Stopp P, Weichgrebe D, Rosenwinkel KH (2017) Innovative digestate evaporation for nutrients recovery and post-processing. Proceedings of the 15th World Congress on Anaerobic Digestion, Beijing (China), 17–20 October 2017, pp 657–660Google Scholar
  153. Tauseef SM, Abbasi T, Abbasi SA (2013) Energy recovery from wastewaters with high-rate anaerobic digesters. Renew Sustain Energy Rev 19:704–741CrossRefGoogle Scholar
  154. Thrän D, Persson T, Svensson M, Daniel-Gromke J, Ponitka J, Seiffert M, Baldwin J, Kranzl L, Schipfer F, Matzenberger J, Devriendt N, Dumont M, Dahl J, Bochmann G (2014) Biomethane—status and factors affecting market development and trade. In: Junginger M, Baxter D (eds) IEA Task 40 and Task 37 Joint Study. IEA BioenergyGoogle Scholar
  155. Turner C, Burton CH (1997) The inactivation of viruses in pig slurry: a review. Bioresour Technol 61:9–20CrossRefGoogle Scholar
  156. Van Brakel J (1980) The Ignis Fatuus of biogas. Small-scale anaerobic digesters (“biogas plants”): a critical review of the pre-1970 literature. Delft University Press, Delft, The Netherlands. http://repository.tudelft.nl/view/ir/uuid:06a18017-8de3-4849-9337-dc41944555d6. Accessed 8 June 2018
  157. Van Lier JB (2008) High-rate anaerobic wastewater treatment: diversifying from end-of-pipe treatment to resource-oriented conversion techniques. Water Sci Technol 57:1137–1148CrossRefGoogle Scholar
  158. Van Lier JB, Hulsbeek J, Stams AJ, Lettinga G (1993) Temperature susceptibility of thermophilic methanogenic sludge: implication for reactor start-up and operation. Bioresour Technol 43:227–235CrossRefGoogle Scholar
  159. Vandeviere P, De Baere L, Verstraete W (2003) Types of anaerobic digester for solid wastes. In: Mata-Álvarez J (ed) Biomethanization of the organic fraction of municipal solid wastes. IWA, London, pp 11–140Google Scholar
  160. Vaneeckhaute C, Belia E, Meers E, Tack FMG, Vanrolleghem PA (2018) Nutrient recovery from digested waste: towards a generic roadmap for setting up an optimal treatment train. Waste Manag 78:385–392CrossRefGoogle Scholar
  161. Vavilin VA, Fernandez B, Palatsi J, Flotats X (2008) Hydrolysis kinetics in anaerobic degradation of particulate organic material: an overview. Waste Manag 28:939–951CrossRefGoogle Scholar
  162. Wäeger-Baumann F, Fuchs W (2012) The application of membrane contactors for the removal of ammonium from anaerobic digester effluent. Sep Sci Technol 47:1436–1442CrossRefGoogle Scholar
  163. Walla C, Schneeberger W (2008) The optimal size for biogas plants. Biomass Bioenergy 32:551–557CrossRefGoogle Scholar
  164. Wang S, Jenab U, Dasa KC (2018) Biomethane production potential of slaughterhouse waste in the United States. Energ Convers Manage 173:143–157CrossRefGoogle Scholar
  165. Yousuf A, Bonk F, Bastidas-Oyanedel JR, Schmidt JE (2016) Recovery of carboxylic acids produced during dark fermentation of food waste by adsorption on Amberlite IRA-67 and activated carbon. Bioresour Technol 217:137–140CrossRefGoogle Scholar
  166. Yousuf A, Bastidas-Oyanedel JR, Schmidt JE (2018) Effect of total solid content and pretreatment on the production of lactic acid from mixed culture dark fermentation of food waste. Waste Manag 77:516–521CrossRefGoogle Scholar
  167. Zema DA (2017) Planning the optimal site, size, and feed of biogas plants in agricultural districts. Biofuels Bioprod Biorefin 11:454–471CrossRefGoogle Scholar
  168. Zhou M, Yan B, Wong JWC, Zhang Y (2018) Enhanced volatile fatty acids production from anaerobic fermentation of food waste: a mini-review focusing on acidogenic metabolic pathways. Bioresour Technol 248:68–78CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.GIRO Joint Research Unit IRTA-UPC, Department of Agrifood Engineering and BiotechnologyUniversitat Politècnica de Catalunya - UPC BarcelonaTECH, Parc Mediterrani de la TecnologiaCastelldefels, BarcelonaSpain

Personalised recommendations