Advertisement

Geological Settings of Archean Rare-Metal Pegmatites

  • Thomas DittrichEmail author
  • Thomas Seifert
  • Bernhard Schulz
  • Steffen Hagemann
  • Axel Gerdes
  • Jörg Pfänder
Chapter
Part of the SpringerBriefs in World Mineral Deposits book series (BRIEFSWMD)

Abstract

The geological evolution of Archean Cratons is of importance for understanding the origin of LCT pegmatites, especially those with massive pollucite mineralisation as at Bikita. The pegmatites of Bikita are hosted by metabasalts and metadiorites of the Upper Bulawayan Group in the Masvingo greenstone belt in the SE part of the Zimbabwe Craton. At about 2670 Ma the southern part of this craton was affected by deformation and up to granulite-facies metamorphism along the Northern Limpopo Thrust Zone. Partial melting during this event led to the intrusion of the 2601 Ma Chilimanzi Suite granitoids with their temporal and spatial association to the pegmatites. The Yilgarn Craton in Western Australia is subdivided into six terranes which host many LCT pegmatites. The Londonderry and Mount Deans pegmatite fields form part of the Kalgoorlie Terrane, whereas the Cattlin Creek pegmatites belong to the Southern Cross Terrane in the southeastern part of the craton. Two main contrasting models for the seven Archean geodynamic events (D0–D6) are discussed: modern-style plate tectonics with a westward directed subduction type scenario, or vertical crustal movements induced by constantly upwelling of hot mantle material. The emplacement of the LCT pegmatites in various greenstone belt lithologies is related to the D5 event (2650–2630 Ma) with widespread intrusions of a low-Ca granitoid suite and formation of Au-mineralisation. The Pilbara Craton in the northern part of Western Australia represents Paleo- to Meso-Archean ages (3530–2830 Ma) and one of the world’s major tantalum pegmatite provinces. Well preserved low-grade Paleo-Archean greenstone belt successions with classic dome-and-keel architecture rest between dome-like granitic complexes that were emplaced during tectonic events (D1–D10) with numerous distinct episodes of magmatism. In the Eastern Pilbara Craton, the Wodgina pegmatite district is located within the Wodgina greenstone belt, surrounded by the large granitoids of the Yule Granitoid complex. The emplacement of the Wodgina pegmatites is associated to an event D10 (2930–2830 Ma) with the Sn-Ta-Li bearing post-tectonic granitoid intrusions of the Split Rock Supersuite at 2890–2830 Ma.

References

  1. Baker DEL, Seccombe PK, Collins WJ (2002) Structural history and timing of gold mineralization in the northern East Strelley Belt, Pilbara Craton, Western Australia. Econ Geol 97:775–785CrossRefGoogle Scholar
  2. Bierlein FP, Groves DI, Goldfarb RJ, Dubé B (2006) Lithospheric controls on the formation of provinces hosting giant orogenic gold deposits. Miner Depos 40:874–887CrossRefGoogle Scholar
  3. Blewett RS, Champion DC (2005) Geology of the Wodgina 1: 100,000 sheet. West Austral Geol Surv Geological Series Map 1:100,000 Explanatory Notes, 33 ppGoogle Scholar
  4. Blewett RS, Czarnota K, Henson PA (2010) Structural-event framework for the eastern Yilgarn Craton, Western Australia, and its implications for orogenic gold. Precambr Res 182:203–229CrossRefGoogle Scholar
  5. Bucci LA, McNaughton NJ, Fletcher IR, Groves DI, Kositcin N, Stein HJ, Hagemann SG (2004) Timing and duration of high-temperature gold mineralization and spatially associated granitoid magmatism at Chalice, Yilgarn Craton, Western Australia. Econ Geol 99:1123–1144CrossRefGoogle Scholar
  6. Campell IH, Hill RI (1988) A two stage model for the formation of the granite-greenstone terrains of the Kalgoorlie-Norseman area, Western Australia. Earth Planet Sci Lett 90:11–25CrossRefGoogle Scholar
  7. Cassidy KF, Champion DC, Krapež B, Barley ME, Brown SJA, Blewett RS, Groenewald PB, Tyler IM (2006) A revised geological framework for the Yilgarn Craton, Western Australia. Geol S West Austral Record 8, 14 ppGoogle Scholar
  8. Cassidy KF, Champion DC, McNaughton NJ, Fletcher IR, Whitaker AJ, Bastrakova IV, Budd AR (2002) Characterisation and metallogenic significance of Archaean granitoids of the Yilgarn Craton, Western Australia. Min Energy Res Inst West Austral Report 222, 536 ppGoogle Scholar
  9. Champion DC, Cassidy KF (2007) An overview of the Yilgarn Craton and its crustal evolution. In: Bierlein FP, Knox-Robinson CM (eds) Proceedings of Geoconferences (WA) Inc: Kalgoorlie’07 Conference. Geoscience Australia Record 15:13–35Google Scholar
  10. Champion DC, Sheraton JW (1997) Geochemistry and Nd isotope systematics of Archaean granites of the Eastern Goldfields, Yilgarn Craton, Australia: Implications for crustal growth processes. Precambr Res 83:109–132CrossRefGoogle Scholar
  11. Cooper DG (1964) The Geology of the Bikita pegmatite. In: Haughton SH (ed) The Geology of some ore deposits in Southern Africa, vol 1–2. Geol Soc South Africa (Johannesburg), pp 441–462Google Scholar
  12. Crook D (2018) The Sinclair Zone Caesium Deposit. Pioneer Dome, WA. Austral Soc Explor Geophys. ASEG Extended Abstracts 1.  https://doi.org/10.1071/aseg2018abt5_3eCrossRefGoogle Scholar
  13. Dawson GC, Krapež B, Fletcher IR, Mcnaughton NJ, Rasmussen B (2003) 1.2 Ga thermal metamorphism in the Albany-Fraser Orogen of Western Australia; consequence of collision or regional heating by dyke swarms? J Geol Soc London 160:29–37CrossRefGoogle Scholar
  14. Dirks PHGM, Jelsma HA (1998) Horizontal accretion and stabilization of the Archean Zimbabwe craton. Geology 26:11–14CrossRefGoogle Scholar
  15. Dittrich T (2016) Meso- to Neoarchean Lithium-Cesium-Tantalum- (LCT-) Pegmatites (Western Australia, Zimbabwe) and a Genetic Model for the Formation of Massive Pollucite Mineralisations. Dissertation Faculty of Geosciences, Geoengineering and Mining at TU Freiberg/Saxony Germany, 341 pp. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-228968
  16. Dittrich T, Seifert T, Schulz B (2015) Genesis of selected lithium-cesium-tantalum- (LCT) pegmatites of Western Australia - with special regards to their exploration potential for the Cs-mineral pollucite and additional data from field work in the Bikita LCT pegmatite field (Zimbabwe). Final technical report, unpublished, prepared for: Rockwood Lithium GmbH, Frankfurt am Main. TU Bergakademie Freiberg, Division of Economic Geology and Petrology, 536 pp and AppendixGoogle Scholar
  17. Dodson MH, Williams IS, Kramers JD (2001) The Mushandike Granite; further evidence for 3.4 Ga magmatism in the Zimbabwe Craton. Geol Mag 138:31–38CrossRefGoogle Scholar
  18. Dunphy JM, Fletcher IR, Cassidy KF, Champion DC (2003) Compilation of SHRIMP U-Pb geochronological data: Yilgarn Craton, Western Australia, 2001–2002. Geoscience Australia Record 15, 139 ppGoogle Scholar
  19. Eliyahu A (2003) Controls on intrusion, crystallization and tantalum distribution of the Mount Dean rare-element pegmatite field, Norseman, Western Australia. MSc thesis University of Western Australia (unpublished)Google Scholar
  20. Ellis HA (1944) A spodumene deposit, Ravensthorpe, W.A. Western Australia Department of Mines Annual Report 1943, 2 ppGoogle Scholar
  21. Foster JG, Lambert DD, Frick LR, Maas R (1996) Re-Os isotopic evidence for genesis of Archaean nickel ores from uncontaminated komatiites. Nature 382–6593:703–706CrossRefGoogle Scholar
  22. Frei R, Blenkinsop G, Schönberg R (1999) Geochronology of the late Archaean Razi and Chilimanzi suites of granites in Zimbabwe: implications for the late Archaean tectonics of the Limpopo Belt and Zimbabwe Craton. South African J Geol 102:55–63Google Scholar
  23. Galaxy Resources Ltd (2017) Galaxy Resources Ltd. Annual Report 2017. http://www.gxy.com/announcements-1/annual-report-2017
  24. Goscombe B, Blewett RS, Czarnota K, Groenewald PB, Maas R (2009) Metamorphic evolution and integrated terrane analysis of the Eastern Yilgarn Craton: rationale, methods, outcomes and interpretation. Geol Surv West Austral Record 23, 281 ppGoogle Scholar
  25. Griffin WL, Belousova EA, O’Neill C, O’Reilly SY, Malkovets V, Pearson NJ, Spetsius S, Wilde SA (2014) The world turns over: Hadean-Archean crust–mantle evolution. Lithos 189:2–15CrossRefGoogle Scholar
  26. Groenewald PB, Painter MGM, Roberts FI, McCabe M, Fox A (2000) East Yilgarn Geoscience Database, 1:100,000 Geology Menzies to Norseman—an explanatory note: Geol Surv West Austral Report 78, 53 ppGoogle Scholar
  27. Groves DI, Phillips GN (1987) The genesis and tectonic controls on Archaean gold deposits of the Western Australian Shield—a metamorphic replacement model. Ore Geol Rev 2:287–322CrossRefGoogle Scholar
  28. Grubb PLC (1985) Pegmatite mineralization patterns in the Zimbabwe Craton. In: Liren W, Taiming Y, Kuirong Y, Didiers J, Grennberg JK, Lowell GR, Hongyouan X, Shoujun Y, Augustithis SS (eds) The crust—the significance of granites gneisses in the lithosphere. Theophrastus Publication S.A, Athens (Greece), pp 669–690Google Scholar
  29. Gwavava O, Ranganai RT (2009) The geology and structure of the Masvingo greenstone belt and adjacent granite plutons from geophysical data, Zimbabwe Craton. South African J Geol 112:277–290CrossRefGoogle Scholar
  30. Hagemann SG, Cassidy KF (2000) Archean orogenic lode gold deposits. Rev Econ Geol 13:9–68Google Scholar
  31. Hickmann AH (1983) Geology of the Pilbara Block and its environs. Geol Surv West Austral Bull 127:287Google Scholar
  32. Hickmann AH (2004) Two contrasting granite-greenstone terranes in the Pilbara Craton, Australia: Evidence for vertical and horizontal tectonic regimes prior to 2900 Ma. Precambr Res 131:153–172CrossRefGoogle Scholar
  33. Hickmann AH (2013) Wodgina, WA Sheet 2655 (2nd ed). West Austral Geol Surv Geological Series Map 1: 100,000, 1 ppGoogle Scholar
  34. Hill RI, Campbell IH, Compston W (1989) Age and origin of granitic rocks in the Kalgoorlie-Norseman region of Western Australia: implications for the origin of the Archaean crust. Geochim Cosmochim Acta 53:1259–1275CrossRefGoogle Scholar
  35. Horstwood MSA, Nesbitt RW, Noble SR, Wilson JF (1999) U-Pb zircon evidence for an extensive early Archean craton in Zimbabwe: a reassessment of the timing of craton formation, stabilization, and growth. Geology 27:707–710CrossRefGoogle Scholar
  36. Hunter WM (1988) Boorabbin, WA Sheet SH51–13 (2nd edn). West Austral Geol Surv 1:250 000 Geological Series map, 1 ppGoogle Scholar
  37. Hunter WM (1993) Geology of the granite-greenstone terrane of the Kalgoorlie and YiImia 1: 100,000 sheets, Western Australia. Geol Surv West Austral Report 35, 91 ppGoogle Scholar
  38. Huston DL, Blewett RS, Keillor B, Standing J, Smithies RH, Marshall A, Mernagh TP, Kamprad J (2002) Lode gold and epithermal deposits of the Mallina basin, North Pilbara Terrain, Western Australia. Econ Geol 87:801–818CrossRefGoogle Scholar
  39. Jacobson MI, Calderwood MA, Grguric BA (2007) Guidebook to the Pegmatites of Western Australia. Hesperian Press, Carlisle/Western Australia, p 356Google Scholar
  40. Jeffrey PM (1956) The radioactive age of four Western Australian pegmatites by the potassium and rubidium methods. Geochim Cosmochim Acta 10:191–195CrossRefGoogle Scholar
  41. Jelsma HA, Dirks PHGM (2002) Neoarchaean tectonic evolution of the Zimbabwe Craton. Geol Soc London Spec Publ 199:183–211.  https://doi.org/10.1144/GSL.SP.2002.199.01.10CrossRefGoogle Scholar
  42. Kennedy AK (1998) SHRIMP ages of apatites from Pilbara tin-bearing pegmatites. Geol Soc Austral Abstracts 49:242Google Scholar
  43. Kent AJR, Hagemann SG (1996) Constraints on the timing of lode-gold mineralization in the Wiluna greenstone belt, Yilgarn Craton, Western Australia. Austral J Earth Sci 43:573–588CrossRefGoogle Scholar
  44. Kinny PD (2000) U-Pb dating of rare metal (Sn-Ta-Li) mineralized pegmatites in Western Australia by SIMS analysis of tin and tantalum bearing ore minerals. New Frontiers in Isotope Geoscience Abstracts and Proceedings Lorne (Australia), pp 113–116Google Scholar
  45. Kositcin N, Brown SJA, Barley ME, Krapež B, Cassidy KF, Champion DC (2008) SHRIMP U-Pb zircon age constraints on the Late Archaean tectonostratigraphic architecture of the Eastern Goldfields Superterrane, Yilgarn Craton, Western Australia. Precambr Res 161:5–31CrossRefGoogle Scholar
  46. Krapež B, Hand JL (2008) Late Archaean deep-marine volcaniclastic sedimentation in an arc-related basin: the Kalgoorlie Sequence of the Eastern Goldfields Superterrane, Yilgarn Craton, Western Australia. Precambr Res 161:89–113CrossRefGoogle Scholar
  47. Kusky TM (1998) Tectonic setting and terrane accretion of the Archean Zimbabwe craton. Geology 26:163–166CrossRefGoogle Scholar
  48. Martin HJ (1964) The Bikita tinfield. Southern Rhodesia Geol Surv Bull 58:114–131Google Scholar
  49. McGoldrick PJ (1994) Norseman, WA Sheet 3233. West Austral Geol Surv Geological Series Map 1: 100,000, 1 ppGoogle Scholar
  50. Melcher F, Graupner T, Gäbler HE, Sitnikova M, Henjes-Kunst F, Oberthuer T, Gerdes A, Dewaele S (2015) Tantalum-(niobium-tin) mineralisation in African pegmatites and rare metal granites: Constraints from Ta-Nb oxide mineralogy, geochemistry and U-Pb geochronology. Ore Geol Rev 64:667–719.  https://doi.org/10.1016/j.oregeorev.2013.09.003CrossRefGoogle Scholar
  51. Mikucki EJ, Roberts FI (2004) Metamorphic petrography of the Kalgoorlie region, Eastern Goldfields Granite-Greenstone Terrane: METPET database. Geol Surv West Austral Record 12, 40 ppGoogle Scholar
  52. Myers JS (1993) Precambrian history of the West Australian Craton and adjacent orogens. Ann Rev Earth Planet Sci 21:453–485CrossRefGoogle Scholar
  53. Nelson DR (1995) Compilation of SHRIMP U-Pb geochronology data, 1994. Geol Surv West Austral Record 3, 251 ppGoogle Scholar
  54. Nelson DR (1997) Evolution of the Archaean granite-greenstone terranes of the Eastern Goldfields, Western Australia: SHRIMP U-Pb zircon constraints. Precambr Res 83:57–81CrossRefGoogle Scholar
  55. Oberthuer T, Davis DW, Blenkinson TG, Höhndorf A (2002) Precise U-Pb mineral ages, Rb-Sr and Sm-Nd systematics for the Great Dyke, Zimbabwe—constraints on late Archean events in the Zimbabwe Craton. Precambr Res 113:293–305CrossRefGoogle Scholar
  56. Partington GA, McNaughton NJ, Williams IS (1995) A review of the geology, mineralization, and geochronology of the Greenbushes Pegmatite, Western Australia. Econ Geol 90:616–635CrossRefGoogle Scholar
  57. Pehrsson SJ, Berman RG, Eglington B, Rainbird R (2013) Two Neoarchean supercontinents revisited: the case for a Rae family of cratons. Precambr Res 232:27–43CrossRefGoogle Scholar
  58. Poineer Resources Ltd (2017) Mineral resource estimate for the Sinclair Cesium Project. http://www.pioneerresources.com.au/project_pioneerdome.php
  59. Prendergast MD (2004) The Bulawayan Supergroup: a late Archaean passive margin-related large igneous province in the Zimbabwe Craton. J Geol Soc London 161:431–445CrossRefGoogle Scholar
  60. Prendergast MD, Wingate MTD (2007) Zircon geochronology and partial structural re-interpretation of the late Archaean Mashaba Igneous Complex, south-central Zimbabwe. South African J Geol 110:585–596CrossRefGoogle Scholar
  61. Roddick JC (1974) Responses of strontium isotopes to some crustal processes. Ph.D. thesis Australian National University Canberra, 350 pp (unpublished)Google Scholar
  62. Rollinson HR, Whitehouse M (2011) The growth of the Zimbabwe Craton during the late Archaean: an ion microprobe U-Pb zircon study. J Geol Soc London 168:941–952CrossRefGoogle Scholar
  63. Savage M, Barley ME, McNaughton NJ (1995) SHRIMP U-Pb geochronology of 2.95–3.0 Ga felsic igneous rocks at Ravensthorpe, Yellowdine Terrane, Yilgarn Craton. Australian Conference on Geochronology and Isotope Geoscience, Workshop Programme and Abstracts. Curtin University of Technology Perth, 30 ppGoogle Scholar
  64. Scibiorskia E, Tohver E, Jourdan F (2015) Rapid cooling and exhumation in the western part of the Mesoproterozoic Albany-Fraser Orogen, Western Australia. Precambr Res 265:232–248CrossRefGoogle Scholar
  65. Shimizu K, Nakamura E, Maruyama S (2005) The geochemistry of ultramafic to mafic volcanics from the Belingwe greenstone belt, Zimbabwe: Magmatism in an Archean continental large igneous province. J Petrol 46:2367–2394CrossRefGoogle Scholar
  66. Smithies RH, Champion DC, Cassidy KF (2003) Formation of Earth’s early Archaean continental crust. Precambr Res 127(1–3):89–101CrossRefGoogle Scholar
  67. Smithies RH, Champion DC, van Kranendonk MJ, Hickman AH (2007) Geochemistry of volcanic rocks of the northern Pilbara Craton, Western Australia. Geol Surv West Austral Report 104, 47 ppGoogle Scholar
  68. Smithies RH, Champion DC, van Kranendonk M, Howard HM, Hickman AH (2005) Modern-style subduction processes in the Mesoarchaean; geochemical evidence from the 3.12 Ga Whundo intra-oceanic arc. Earth Planet Sci Lett 231:221–237CrossRefGoogle Scholar
  69. Smithies RH, Ivanic TJ, Lowrey JR, Morris PA, Barnes J, Wyche S, Lu YJ (2018) Two distinct origins for Archean greenstone belts. Earth Planet Sci Lett 487:106–116CrossRefGoogle Scholar
  70. Smithies RH, Spaggiari CV, Kirkland CL (2015) Building the crust of the Albany-Fraser Orogen: constraints from granite geochemistry. Geol Surv West Austral Report 150, 49 ppGoogle Scholar
  71. Soederlund U, Hofmann A, Klausen MB, Olsson JR, Ernst RE, Persson PO (2010) Towards a complete magmatic barcode for the Zimbabwe craton: baddeleyite U-Pb dating of regional dolerite dyke swarms and sill complexes. Precambr Res 183:388–398CrossRefGoogle Scholar
  72. Sofoulis J (1958) Report on Cattlin Creek spodumene pegmatite, Ravensthorpe, Phillips River Goldfield. Geol Surv West Austral Bull 110:193–202Google Scholar
  73. Stark JC, Simon A, Wilde SA, Söderlund U, Li ZX, Rasmussen B, Zi JW (2018) First evidence of Archean mafic dykes at 2.62 Ga in the Yilgarn Craton, Western Australia: Links to cratonisation and the Zimbabwe Craton. Precambr Res 317:1–13CrossRefGoogle Scholar
  74. Sweetapple MT (2000) Characteristics of Sn-Ta-Be-Li-industrial mineral deposits of the Archaean Pilbara Craton, Western Australia. Austral Geol Surv Org Record 2000–44, 59 ppGoogle Scholar
  75. Sweetapple MT (2017) A review of the setting and internal characteristics of lithium pegmatite systems of the Archaean North Pilbara and Yilgarn Cratons, Western Australia. Granites 2017 Conference Benalla Victoria, Ext Abstr Austr Inst Geosci Bull 65Google Scholar
  76. Sweetapple MT, Collins PLF (2002) Genetic framework for the classification and distribution of Archean rare metal pegmatites in the North Pilbara Craton, Western Australia. Econ Geol 97:873–895CrossRefGoogle Scholar
  77. Taylor PN, Kramers JD, Moorbath S, Wilson JF, Orpen JL, Martin A (1991) Pb/Pb, Sm-Nd and Rb-Sr geochronology in the Archean craton of Zimbabwe. Chem Geol 87:175–196Google Scholar
  78. Teitler Y, Duuring P, Hagemann SG (2017) Genesis history of iron ore from Mesoarchean BIF at the Wodgina mine, Western Australia. Austral J Earth Sci 64:41–62.  https://doi.org/10.1080/08120099.2017.1266387CrossRefGoogle Scholar
  79. Thom R, Lipple SL (1977) Ravensthorpe, WA Sheet SI51-5. Geol Surv West Austral 1: 250 000 Geological Series map, 1 ppGoogle Scholar
  80. Turek A (1966) Rb-Sr isotopic studies in the Kalgoorlie-Norseman area, Western Australia. Ph.D. thesis Australian National University (unpublished)Google Scholar
  81. van Kranendonk MJ, Hickman AH, Smithies RH, Williams IR, Bagas L, Farrell TR (2006) Revised lithostratigraphy of Archean supracrustal and intrusive rocks in the northern Pilbara Craton, Western Australia. Geol Surv West Austral Record 15, 63 ppGoogle Scholar
  82. van Kranendonk MJ, Smithies RH, Hickman AH, Champion DC (2007a) Paleoarchean development of a continental nucleus: The East Pilbara Terrane of the Pilbara Craton, Western Australia. In: van Kranendonk HJ, Smithies RJ, Bennett VC (eds) Earth’s Oldest Rocks. Developments in Precambrian Geology vol 15, Elsevier Amsterdam, pp 307–337Google Scholar
  83. van Kranendonk MJ, Smithies RH, Hickman AH, Champion DC (2007b) Review: secular tectonic evolution of Archean continental crust: interplay between horizontal and vertical processes in the formation of the Pilbara Craton, Australia. Terra Nova 19:1–38CrossRefGoogle Scholar
  84. Wellmann P (1999) Interpretation of regional geophysics of the Pilbara Craton, northwest Australia. Austral Geol Surv Org Record 4, 60 ppGoogle Scholar
  85. Wilson JF (1964) The geology of the country around Fort Victoria. Southern Rhodesia Geol Surv Bull 58, 147 ppGoogle Scholar
  86. Wilson JF (1990) A craton and its cracks; some of the behaviour of the Zimbabwe Block from the late Archaean to the Mesozoic in response to horizontal movements, and the significance of some of its mafic dyke fracture patterns. J African Earth Sci 10:483–501CrossRefGoogle Scholar
  87. Wilson JE, Nesbitt RW, Fanning CM (1995) Zircon geochronology of Archaean felsic sequences in the Zimbabwe Craton: a revision of greenstone stratigraphy and a model for crustal growth. In: Coward MP, Ries AC (eds) Early Precambrian Processes. Geol Soc London Spec Publ 95:109–126Google Scholar
  88. Wilson JF, Orpen JL, Bickle MJ, Hawkesworth CJ, Martin A, Nisbet EG (1978) Granite-greenstone terrains of the Rhodesian Archaean craton. Nature 271–5640:23–27CrossRefGoogle Scholar
  89. Witt WK (1996) Ravensthorpe, WA Sheet 2930. Geol Surv West Austral Geol Series 1: 100,000 map, 1 ppGoogle Scholar
  90. Witt WK (1999) The Archaean Ravensthorpe Terrane, Western Australia: synvolcanic Cu-Au mineralization in a deformed island arc complex. Precambr Res 96:143–181CrossRefGoogle Scholar
  91. Witt WK, Cassidy KF, Lu Y-J, Hagemann SG (2017) Syenitic Group intrusions of the Archean Kurnalpi terrane, Yilgarn craton: Hosts to ancient alkali porphyry gold deposits? Ore Geol Rev.  https://doi.org/10.1016/j.oregeorev.2017.08.037CrossRefGoogle Scholar
  92. Witt WK, Cassidy KF, Lu Y-L, Hagemann SG (2018) The tectonic setting and evolution of the 2.7 Ga Kalgoorlie-Kurnalpi Rift, a world-class Archean gold province. Mineral Depos.  https://doi.org/10.1007/s00126-017-0778-9
  93. Wyche S, Kirkland CL, Riganti A, Pawley MJ, Belousova E, Wingate MTD (2012) Isotopic constraints on stratigraphy in the central and eastern Yilgarn Craton, Western Australia. Austral J Earth Sci 59:657–670CrossRefGoogle Scholar
  94. Zegers TE, Nelson DR, Wijbrans JR, White SH (2001) SHRIMP U-Pb zircon dating of Archean core complex formation and pancratonic strike-slip deformation in the East Pilbara granite-greenstone terrain. Tectonics 20:883–908CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Thomas Dittrich
    • 1
    Email author
  • Thomas Seifert
    • 1
  • Bernhard Schulz
    • 1
  • Steffen Hagemann
    • 2
  • Axel Gerdes
    • 3
  • Jörg Pfänder
    • 4
  1. 1.Division of Economic Geology and Petrology, Institute of MineralogyTU Bergakademie FreibergFreibergGermany
  2. 2.Centre for Exploration Targeting, School of Earth SciencesThe University of Western AustraliaCrawleyAustralia
  3. 3.Department of GeosciencesGoethe University FrankfurtFrankfurt am MainGermany
  4. 4.Ar-Ar-Lab/Division of Tectonophysics, Institute for GeologyTU Bergakademie FreibergFreibergGermany

Personalised recommendations