Advertisement

The Synthesis of the Switching Systems Optimal Parameters Search Algorithms

  • Olga Druzhinina
  • Olga Masina
  • Alexey Petrov
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 974)

Abstract

The problems of the optimal motion parameters search for generalized models of the dynamical systems are considered. The switching dynamic models taking into account action of non-stationery forces and optimality conditions are studied. The method for designing the dynamical models using polynomial regression is proposed. The optimal analytical solutions for some types of parametric curves are found. The algorithms of the optimal motion parameters search by means of the intelligent control methods are elaborated. The indicated algorithms and the software package allowed to execute a series of computational experiments and to carry out the stability analysis. The prospects of the results development in terms of generalization and modification of the models and the methods are presented. The results and the algorithms can be applied to the problems of automated transport design, robotics, and aircrafts motion control.

Keywords

Dynamical switching model Optimal parameters of motion Optimal control Algorithms Computational experiment Artificial neural networks 

References

  1. 1.
    Aleksandrov, V.V., Boltyansky, V.G., Lemak, S.S., Parusnikov, N.A., Tikhomirov, V.M.: Optimization of the Dynamics of Controlled Systems. Publishing House of Moscow State University, Moscow (2000)Google Scholar
  2. 2.
    Ivanov, A.A., Torokhov, S.L.: Control in Technical Systems. Forum, Moscow (2012)Google Scholar
  3. 3.
    Semushin, I.V., Tsiganov, A.V., Tsyganov, Yu., Golubkov, A.V., Vinokurov, D.S., et al.: Modeling and estimation of the trajectory of a moving object. Bull. South Ural State Univ. Ser. Math. Model. Program. 10(3), 108–119 (2017).  https://doi.org/10.14529/mmp170309CrossRefzbMATHGoogle Scholar
  4. 4.
    Bulatov, M.V., Lima, P.M., Thanh, D.T.: An integral method for the numerical solution of nonlinear singular boundary value problems. Bull. South Ural State Univ. Ser. Math. Model. Program. Comput. Softw. 8(4), 5–13 (2015).  https://doi.org/10.14529/mmp150401CrossRefzbMATHGoogle Scholar
  5. 5.
    Aleksandrov, V.V., Boltyanskii, V.G., Lemak, S.S., Parusnikov, N.A., Tikhomirov, V.M.: Optimal Control of Movement. Fizmatlit, Moscow (2005)Google Scholar
  6. 6.
    Blagodatskikh, V.I., Filippov, A.F.: Differential inclusions and optimal control. Proc. Steklov Inst. Math. 169, 194–252 (1985)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Masina, O.N.: The problems of the motion control of transport systems. Transp. Sci. Technol. Control 12, 10–12 (2006)Google Scholar
  8. 8.
    Cellina, A.: A view on differential inclusions. Rend. Sem. Mat. Univ. Pol. Torino 63, 197–209 (2005)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Finagenko, I.A.: Differential Equations with Discontinuous Right-Hand Side. ISDCT SB RAS, Irkutsk (2013)Google Scholar
  10. 10.
    Masina, O.N., Druzhinina, O.V.: On optimal control of dynamical systems described by differential inclusions. In: Proceedings of the VII International Conference on Optimization Methods and Applications “Optimization and Applications” (OPTIMA-2016) held in Petrovac, Montenegro, 25 September–2 October, pp. 104–105. Dorodnicyn Computing Centre of FRC CSC RAS, Moscow (2016)Google Scholar
  11. 11.
    Zhang, G., Shen, Y., Wang, L.: Global anti-synchronization of a class of chaotic memristive neural networks with time-varying delays. Neural Netw. 46(1), 195–203 (2013).  https://doi.org/10.1016/j.neunet.2013.04.001CrossRefzbMATHGoogle Scholar
  12. 12.
    Wu, A., Wen, S., Zeng, Z.: Synchronization control of a class of memristor-based recurrent neural networks. Inf. Sci. 183(1), 106–116 (2012).  https://doi.org/10.1016/j.ins.2011.07.044MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Andrzejczak, G.: Spline reproducing kernels on R and error bounds for piecewise smooth LBV problems. Appl. Math. Comput. 320, 27–44 (2018).  https://doi.org/10.1016/j.amc.2017.09.021MathSciNetCrossRefGoogle Scholar
  14. 14.
    Ghasemi, M.: High order approximations using spline-based differential quadrature method: Implementation to the multi-dimensional PDEs. Appl. Math. Modell. 46, 63–80 (2017).  https://doi.org/10.1016/j.apm.2017.01.052MathSciNetCrossRefGoogle Scholar
  15. 15.
    Zin, S.M.: Quartic B-spline and two-step hybrid method applied to boundary value problem. In: AIP Conference Proceedings, vol. 1522, no. 744 (2013).  https://doi.org/10.1063/1.4801200
  16. 16.
    Druzhinina, O.V., Masina, O.N., Petrov, A.A.: Model of motion control of transport system taking into account conditions of optimality, multivaluence, and variability. Transp. Sci. Technol. Control 4, 3–9 (2017)Google Scholar
  17. 17.
    Druzhinina, O.V., Masina, O.N., Petrov, A.A.: Approach elaboration to solution of the problems of motion control of technical systems modeled by differential inclusions. Inf. Meas. Control. Syst. 15(4), 64–72 (2017)Google Scholar
  18. 18.
    Druzhinina, O.V., Masina, O.N., Petrov, A.A.: Models for control of technical systems motion taking into account optimality conditions. In: Proceedings of the VIII International Conference on Optimization Methods and Applications “Optimization and Application” (OPTIMA-2017) held in Petrovac, Montenegro, 2–7 October, pp. 386–391. Dorodnicyn Computing Centre of FRC CSC RAS, Moscow (2017). http://ceur-ws.org/Vol-1987/paper-56.pdf
  19. 19.
    Wales, D., Doye, J.: Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 Atoms. J. Phys. Chem. A 101, 5111–5116 (1997)CrossRefGoogle Scholar
  20. 20.
    Das, S., Mullick, S.S., Suganthan, P.N.: Recent advances in differential evolution-an updated survey. Swarm Evol. Comput. 27(1), 61–106 (2016).  https://doi.org/10.1016/j.swevo.2016.01.004CrossRefGoogle Scholar
  21. 21.
    Yu, W., et al.: Differential evolution with two-level parameter adaptation. IEEE Trans. Cybern. 44(7), 1080–1099 (2014).  https://doi.org/10.1109/TCYB.2013.2279211CrossRefGoogle Scholar
  22. 22.
    Hamdy, M., Nguyen, A.-T., Hensen, J.L.M.: A performance comparison of multi-objective optimization algorithms for solving nearly-zero-energy-building design problems. Energy Build. 121, 57–71 (2016).  https://doi.org/10.1016/j.enbuild.2016.03.035CrossRefGoogle Scholar
  23. 23.
    Arqub, O.A., Abo-Hammour, Z.: Numerical solution of systems of second-order boundary value problems using continuous genetic algorithm. Inf. Sci. 279, 396–415 (2014).  https://doi.org/10.1016/j.ins.2014.03.128MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Elsayed, S.M., Sarker, R.A., Essam, D.L.: A new genetic algorithm for solving optimization problems. Eng. Appl. Artif. Intell. 27, 57–69 (2014).  https://doi.org/10.1016/j.engappai.2013.09.013CrossRefGoogle Scholar
  25. 25.
    Ullah, A., Malik, S.A., Alimgeer, K.S.: Evolutionary algorithm based heuristic scheme for nonlinear heat transfer equations. PLOS ONE 13(1) (2018).  https://doi.org/10.1371/journal.pone.0191103CrossRefGoogle Scholar
  26. 26.
    Tenenev, V.A., Rusyak, I.G., Sufiyanov, V.G., Ermolaev, M.A., Nefedov, D.G.: Construction of approximate mathematical models on results of numerical experiments. Bull. South Ural State Univ. Ser. Math. Model. Program. Comput. Softw. 8(1), 76–87 (2015).  https://doi.org/10.14529/mmp150106CrossRefzbMATHGoogle Scholar
  27. 27.
    He, W., Chen, Y., Yin, Z.: Adaptive neural network control of an uncertain robot with full-state constraints. IEEE Trans. Cybern. 46(3), 620–629 (2016).  https://doi.org/10.1109/TCYB.2015.2411285CrossRefGoogle Scholar
  28. 28.
    He, W., Dong, Y., Sun, C.: Adaptive neural impedance control of a robotic manipulator with input saturation. IEEE Trans. Syst. Man Cybern. Syst. 46(3), 334–344 (2016).  https://doi.org/10.1109/TSMC.2015.2429555CrossRefGoogle Scholar
  29. 29.
    Chen, C.L.P., Liu, Y.-J., Wen, G.-X.: Fuzzy neural network-based adaptive control for a class of uncertain nonlinear stochastic systems. IEEE Trans. Cybern. 44(5), 583–593 (2014).  https://doi.org/10.1109/TCYB.2013.2262935CrossRefGoogle Scholar
  30. 30.
    Raja, M., Abbas, S., Syam, M., Wazwaz, A.: Design of neuro-evolutionary model for solving nonlinear singularly perturbed boundary value problems. Appl. Soft Comput. 62, 373–394 (2018).  https://doi.org/10.1016/j.asoc.2017.11.002CrossRefGoogle Scholar
  31. 31.
    Vasiliev, S.N., Novikov, D.A., Bakhtadze, N.N.: Intelligent control of industrial processes. Manuf. Model. Manag. Control 1(7), 49–57 (2013). Part 1Google Scholar
  32. 32.
    Druzhinina, O.V., Masina, O.N.: On approaches to the stability analysis of nonlinear dynamic systems with logical controllers. Modern Inf. Technol. IT-Educ. 13(2), 40–49 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Federal Research Center “Computer Science and Control” of RASMoscowRussia
  2. 2.Bunin Yelets State UniversityYeletsRussia

Personalised recommendations