Advertisement

Numerical Implementation of the Contact of Optimal Trajectory with Singular Regime in the Optimal Control Problem with Quadratic Criteria and Scalar Control

  • Alexander P. Afanas’evEmail author
  • Sergei M. Dzyuba
  • Irina I. Emelyanova
  • Elena V. Putilina
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 974)

Abstract

Previous works by these authors offer the numerical method of successive approximations for developing the solutions of the problem of stabilization of nonlinear systems with standard functional. This paper considers applying this method for studying the problem with singular control. It is achieved by introducing an auxiliary problem. The solution for the auxiliary problem provides a smooth approximation to the solution of the initial problem. The paper presents the algorithms for constructing an approximate solution for the initial problem. It is demonstrated that unlike direct algorithms of optimal control, these algorithms allow registering the saturation point, thus enabling one to register and study singular regimes.

Keywords

Method of successive approximations Problem of minimizing a quadratic functional for a class of nonlinear systems with scalar control Singular control 

Notes

Acknowledgments

This research was supported by the Russian Science Foundation, grant no. 16-11-10352.

References

  1. 1.
    Athans, M., Falb, P.: Optimal Control. McGraw-Hill, New York (1966)zbMATHGoogle Scholar
  2. 2.
    Bellman, R.: Adaptive Control Processes. Princeton University Press, Princeton (1961)zbMATHCrossRefGoogle Scholar
  3. 3.
    Lukes, D.L.: Optimal regulation of nonlinear systems. SIAM J. Control Optim. 7, 75–100 (1969)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Yamamoto, Y.: Optimal control of nonlinear systems with quadratic performance. J. Math. Anal. Appl. 64, 348–353 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Dacka, C.: On the controllability of a class of nonlinear systems. IEEE Trans. Automat. Control. 25, 263–266 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Balachandran, K., Somasundaram, D.: Existence of optimal control for nonlinear systems with quadratic performance. J. Austral. Math. Soc. Ser. B. 29, 249–255 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Afanas’ev, A.P., Dzyuba, S.M., Lobanov, S.M., Tyutyunnik, A.V.: Successive approximation and suboptimal control of systems with separated linear part. Appl. Comput. Math. 2(1), 48–56 (2003)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Afanas’ev, A.P., Dzyuba, S.M., Lobanov, S.M., Tyutyunnik, A.V.: On a suboptimal control of nonlinear systems via quadratic criteria. Appl. Comput. Math. 3(2), 158–169 (2004)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Tang, G.-Y., Gao, D.-X.: Approximation design of optimal controllers for nonlinear systems with sinusoidal disturbances. Nonlinear Anal. Theory Methods Appl. 66(2), 403–414 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Zhang, S.-M., Tang, G.-Y., Sun, H.-Y.: Approximate optimal rejection to sinusoidal disturbance for nonlinear systems. In: IEEE International Conference on Systems, Man and Cybernetics, pp. 2816–2821 (2008)Google Scholar
  11. 11.
    Afanas’ev, A.P., Dzyuba, S.M.: Optimal control of nonlinear systems via quadratic criteria. Trans. ISA RAS 32, 49–62 (2008). (in Russian)Google Scholar
  12. 12.
    Gao, De-Xin: Disturbance attenuation and rejection for systems with nonlinearity via successive approximation approach. In: IEEE Proceedings of the 30th Chinese Control Conference, pp. 250–255 (2011)Google Scholar
  13. 13.
    Ma, S.Y.: A successive approximation approach of nonlinear optimal control with R-rank persistent disturbances. Appl. Mech. Mater. 130, 1862–1866 (2012)Google Scholar
  14. 14.
    Afanas’ev, A.P., Dzyuba, S.M., Emelyanova, I.I., Pchelintsev, A.N., Putilina, E.V.: Optimal control of nonlinear systems with separated linear part via quadratic criteria. Optim. Lett. (2018).  https://doi.org/10.1007/s11590-018-1309-z
  15. 15.
    Fuller, A. T.: Optimization of relay control systems with respect to different qualitative criteria. In: Proceedings of the First IFAC Conference, AN SSSR, pp. 584–605 (1961)Google Scholar
  16. 16.
    Kelley, H.J., Kopp, R.E., Moyer, H.G.: Singular extremals. In: Leitmann, G. (ed.) Topics of Optimization, pp. 63–101. Academic Press, New York and London (1967)CrossRefGoogle Scholar
  17. 17.
    Neustadt, L.W.: Optimization, A Theory of Necessary Conditions. Princeton University Press, Princeton (1976)zbMATHGoogle Scholar
  18. 18.
    Krener, A.: The high order maximal principle and its application to singular extremals. Siam J. Control Optim. 15(2), 256–293 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Bershchanskii, Y.M.: Fusing of singular and nonsingular parts of optimal control. Autom. Remote Control 40(3), 325–330 (1979)MathSciNetGoogle Scholar
  20. 20.
    Chukanov, S.V., Milutin, A.A.: Qualitative study of singularities for extremals of quadratic optimal control problem. Russ. J. Math. Phys. 2(1), 31–48 (1994)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Zelikin, M.I., Lokutsievskii, L.V., Hildebrand, R.: Typicality of chaotic fractal behavior of integral vortices in Hamiltonian systems with discontinuous right hand side. In: Optimal Control, Contemporary Mathematics. Fundamental directions(SMFN), the Peoples’ Friendship University of Russia (RUDN), Moscow, vol. 56, pp. 5–128 (2015)Google Scholar
  22. 22.
    Fedorenko, R.P.: Approximate Solution of Optimal Control Problems. Nauka, Moscow (1978). (in Russian)zbMATHGoogle Scholar
  23. 23.
    Schwartz, L.: Analyse Mathématique, vol. II. Hermann, Paris (1967). (in French)zbMATHGoogle Scholar
  24. 24.
    Afanas’ev, A.P., Dzyuba, S.M.: Method for constructing approximate analytic solutions of differential equations with a polynomial right-hand side. Comput. Math. Math. Phys. 55(10), 1665–1673 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Afanas’ev, A.P., Dzyuba S.M., Emelyanova, I.I., Putilina, E.V.: Decomposition algorithm of generalized horner scheme for multidimensional polynomial evaluation. In: Proceedings of the OPTIMA-2017 Conference, Petrovac, Montenegro, 02 October 2017, pp. 7–11 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alexander P. Afanas’ev
    • 1
    • 2
    • 3
    Email author
  • Sergei M. Dzyuba
    • 4
  • Irina I. Emelyanova
    • 1
    • 2
    • 3
    • 4
  • Elena V. Putilina
    • 1
  1. 1.Institute for Information Transmission Problems RASMoscowRussia
  2. 2.National Research University Higher School of EconomicsMoscowRussia
  3. 3.Lomonosov Moscow State UniversityMoscowRussia
  4. 4.Tver State Technical UniversityTverRussia

Personalised recommendations