Online Learning of Weighted Relational Rules for Complex Event Recognition

  • Nikos KatzourisEmail author
  • Evangelos Michelioudakis
  • Alexander Artikis
  • Georgios Paliouras
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11052)


Systems for symbolic complex event recognition detect occurrences of events in time using a set of event definitions in the form of logical rules. The Event Calculus is a temporal logic that has been used as a basis in event recognition applications, providing among others, connections to techniques for learning such rules from data. We advance the state-of-the-art by combining an existing online algorithm for learning crisp relational structure with an online method for weight learning in Markov Logic Networks (MLN). The result is an algorithm that learns complex event patterns in the form of Event Calculus theories in the MLN semantics. We evaluate our approach on a challenging real-world application for activity recognition and show that it outperforms both its crisp predecessor and competing online MLN learners in terms of predictive performance, at the price of a small increase in training time. Code related to this paper is available at:


Online structure and weight learning Markov logic networks Event calculus 



This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 780754.


  1. 1.
    Alevizos, E., Skarlatidis, A., Artikis, A., Paliourasm, G.: Probabilistic complex event recognition: a survey. ACM Computing Surveys (2018) (to appear)Google Scholar
  2. 2.
    Artikis, A., Sergot, M., Paliouras, G.: An event calculus for event recognition. IEEE Trans. Knowl. Data Eng. 27(4), 895–908 (2015)CrossRefGoogle Scholar
  3. 3.
    Artikis, A., Skarlatidis, A., Portet, F., Paliouras, G.: Logic-based event recognition. Knowl. Eng. Rev. 27(4), 469–506 (2012)CrossRefGoogle Scholar
  4. 4.
    Athakravi, D., Corapi, D., Broda, K., Russo, A.: Learning through hypothesis refinement using answer set programming. In: Zaverucha, G., Santos Costa, V., Paes, A. (eds.) ILP 2013. LNCS (LNAI), vol. 8812, pp. 31–46. Springer, Heidelberg (2014). Scholar
  5. 5.
    Corapi, D., Russo, A., Lupu, E.: Inductive logic programming as abductive search. In ICLP-2010, pp. 54–63 (2010)Google Scholar
  6. 6.
    Corapi, D., Sykes, D., Inoue, K., Russo, A.: Probabilistic rule learning in nonmonotonic domains. In: Leite, J., Torroni, P., Ågotnes, T., Boella, G., van der Torre, L. (eds.) CLIMA 2011. LNCS (LNAI), vol. 6814, pp. 243–258. Springer, Heidelberg (2011). Scholar
  7. 7.
    Cugola, G., Margara, A.: Processing flows of information: from data stream to complex event processing. ACM Comput. Surv. (CSUR) 44(3), 15 (2012)CrossRefGoogle Scholar
  8. 8.
    De Raedt, L.: Logical and Relational Learning. Springer, Heidelberg (2008). Scholar
  9. 9.
    De Raedt, L., Kersting, K., Natarajan, S., Poole, D.: Statistical relational artificial intelligence: logic, probability, and computation. Synth. Lect. Artif. Intell. Mach. Learn. 10(2), 1–189 (2016)CrossRefGoogle Scholar
  10. 10.
    Domingos, P., Hulten, G.: Mining high-speed data streams. In: ACM SIGKDD, pp. 71–80. ACM (2000)Google Scholar
  11. 11.
    Dragiev, S., Russo, A., Broda, K., Law, M., Turliuc, C.: An abductive-inductive algorithm for probabilistic inductive logic programming. In: Proceedings of the 26th International Conference on Inductive Logic Programming (Short papers), London, UK, 2016, pp. 20–26 (2016)Google Scholar
  12. 12.
    Dries, A., De Raedt, L.: Towards clausal discovery for stream mining. In: De Raedt, L. (ed.) ILP 2009. LNCS (LNAI), vol. 5989, pp. 9–16. Springer, Heidelberg (2010). Scholar
  13. 13.
    Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Gama, J.: Knowledge Discovery from Data Streams. CRC Press, Boca Raton (2010)CrossRefGoogle Scholar
  15. 15.
    Gama, J., Sebastião, R., Rodrigues, P.P.: On evaluating stream learning algorithms. Mach. Learn. 90(3), 317–346 (2013)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58(301), 13–30 (1963)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Huynh, T.N., Mooney, R.J.: Max-Margin weight learning for markov logic networks. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009, Part I. LNCS (LNAI), vol. 5781, pp. 564–579. Springer, Heidelberg (2009). Scholar
  18. 18.
    Huynh, T.N., Mooney, R.J.: Online structure learning for markov logic networks. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011, Part II. LNCS (LNAI), vol. 6912, pp. 81–96. Springer, Heidelberg (2011). Scholar
  19. 19.
    Katzouris, N.: Scalable relational learning for event recognition. PhD Thesis, University of Athens (2017).
  20. 20.
    Katzouris, N., Artikis, A., Paliouras, G.: Incremental learning of event definitions with inductive logic programming. Mach. Learn. 100(2–3), 555–585 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Katzouris, N., Artikis, A., Paliouras, G.: Online learning of event definitions. Theory Pract. Log. Program. 16(5–6), 817–833 (2016)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Katzouris, N., Artikis, A., Paliouras, G.: Parallel Online Learning of Event Definitions. In: Lachiche, N., Vrain, C. (eds.) ILP 2017. LNCS (LNAI), vol. 10759, pp. 78–93. Springer, Cham (2018). Scholar
  23. 23.
    Kowalski, R., Sergot, M.: A logic-based calculus of events. New Gener. Comput. 4(1), 67–95 (1986)CrossRefGoogle Scholar
  24. 24.
    Law, M., Russo, A., Broda, K.: Iterative learning of answer set programs from context dependent examples. Theory Pract. Log. Program. 16(5–6), 834–848 (2016)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Littlestone, N.: Learning quickly when irrelevant attributes abound: a new linear-threshold algorithm. Mach. Learn. 2(4), 285–318 (1988)Google Scholar
  26. 26.
    Margara, A., Cugola, G., Tamburrelli, G.: Learning from the past: automated rule generation for complex event processing. In: Proceedings of the 8th ACM International Conference on Distributed Event-Based Systems, pp. 47–58. ACM (2014)Google Scholar
  27. 27.
    Michelioudakis, E., Skarlatidis, A., Paliouras, G., Artikis, A.: OSL\(\alpha \): online structure learning using background knowledge axiomatization. In: Frasconi, P., Landwehr, N., Manco, G., Vreeken, J. (eds.) ECML PKDD 2016, Part I. LNCS (LNAI), vol. 9851, pp. 232–247. Springer, Cham (2016). Scholar
  28. 28.
    Ray, O.: Nonmonotonic abductive inductive learning. J. Appl. Log. 7(3), 329–340 (2009)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1–2), 107–136 (2006)CrossRefGoogle Scholar
  30. 30.
    Skarlatidis, A., Paliouras, G., Artikis, A., Vouros, G.: Probabilistic event calculus for event recognition. ACM Trans. Comput. Log. (TOCL) 16(2), 11 (2015)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Srinivasan, A., Bain, M.: An empirical study of on-line models for relational data streams. Mach. Learn. 106(2), 243–276 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nikos Katzouris
    • 1
    Email author
  • Evangelos Michelioudakis
    • 1
    • 2
  • Alexander Artikis
    • 1
    • 3
  • Georgios Paliouras
    • 1
  1. 1.National Center for Scientific Research (NCSR) “Demokritos”AthensGreece
  2. 2.National and Kapodistrian University of AthensAthensGreece
  3. 3.University of PireausPireausGreece

Personalised recommendations