Advertisement

Evaluation Procedures for Forecasting with Spatio-Temporal Data

  • Mariana OliveiraEmail author
  • Luís Torgo
  • Vítor Santos Costa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11051)

Abstract

The amount of available spatio-temporal data has been increasing as large-scale data collection (e.g., from geosensor networks) becomes more prevalent. This has led to an increase in spatio-temporal forecasting applications using geo-referenced time series data motivated by important domains such as environmental monitoring (e.g., air pollution index, forest fire risk prediction). Being able to properly assess the performance of new forecasting approaches is fundamental to achieve progress. However, the dependence between observations that the spatio-temporal context implies, besides being challenging in the modelling step, also raises issues for performance estimation as indicated by previous work. In this paper, we empirically compare several variants of cross-validation (CV) and out-of-sample (OOS) performance estimation procedures that respect data ordering, using both artificially generated and real-world spatio-temporal data sets. Our results show both CV and OOS reporting useful estimates. Further, they suggest that blocking may be useful in addressing CV’s bias to underestimate error. OOS can be very sensitive to test size, as expected, but estimates can be improved by careful management of the temporal dimension in training. Code related to this paper is available at: https://github.com/mrfoliveira/Evaluation-procedures-for-forecasting-with-spatio-temporal-data.

Keywords

Evaluation methods Performance estimation Cross-validation Spatio-temporal data Geo-referenced time series Reproducible research 

Notes

Acknowledgments

This work is partially funded by the ERDF through the COMPETE 2020 Programme within project POCI-01-0145-FEDER-006961, and by National Funds through the FCT as part of project UID/EEA/50014/2013. Mariana Oliveira is supported by a FCT/MAPi PhD research grant (PD/BD/128166/2016). Vítor Santos Costa is supported by the project POCI-01-0145-FEDER-016844.

Supplementary material

478880_1_En_43_MOESM1_ESM.pdf (179 kb)
Supplementary material 1 (pdf 179 KB)

References

  1. 1.
    Appice, A., Pravilovic, S., Malerba, D., Lanza, A.: Enhancing regression models with spatio-temporal indicator additions. In: Baldoni, M., Baroglio, C., Boella, G., Micalizio, R. (eds.) AI*IA 2013. LNCS (LNAI), vol. 8249, pp. 433–444. Springer, Cham (2013).  https://doi.org/10.1007/978-3-319-03524-6_37CrossRefGoogle Scholar
  2. 2.
    Arlot, S., Celisse, A.: A survey of cross-validation procedures for model selection. Stat. Surv. 4, 40–79 (2010).  https://doi.org/10.1214/09-SS054MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bergmeir, C., Benítez, J.M.: On the use of cross-validation for time series predictor evaluation. Inf. Sci. (Ny) 191, 192–213 (2012).  https://doi.org/10.1016/j.ins.2011.12.028CrossRefGoogle Scholar
  4. 4.
    Bergmeir, C., Costantini, M., Benítez, J.M.: On the usefulness of cross-validation for directional forecast evaluation. Comput. Stat. Data Anal. 76, 132–143 (2014).  https://doi.org/10.1016/j.csda.2014.02.001MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Burman, P., Chow, E., Nolan, D.: A cross-validatory method for dependent data. Biometrika 81(2), 351–358 (1994).  https://doi.org/10.1093/biomet/81.2.351MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Calvo, B., Santafé Rodrigo, G.: scmamp: statistical comparison of multiple algorithms in multiple problems. R J. 8(1), August 2016Google Scholar
  7. 7.
    Carroll, S.S., Cressie, N.: Spatial modeling of snow water equivalent using covariances estimated from spatial and geomorphic attributes. J. Hydrol. 190(1–2), 42–59 (1997).  https://doi.org/10.1016/S0022-1694(96)03062-4CrossRefGoogle Scholar
  8. 8.
    Ceci, M., Corizzo, R., Fumarola, F., Malerba, D., Rashkovska, A.: Predictive modeling of PV energy production: How to set up the learning task for a better prediction? IEEE T. Ind. Inform. 13(3), 956–966 (2017)CrossRefGoogle Scholar
  9. 9.
    Cerqueira, V., Torgo, L., Smailovi, J., Mozeti, I.: A comparative study of performance estimation methods for time series forecasting. In: International Conference on Data Science and Advanced Analytics (DSAA), pp. 529–538 (2017).  https://doi.org/10.1109/DSAA.2017.7
  10. 10.
    Cheysson, F.: starma: Modelling Space Time AutoRegressive Moving Average. In: (STARMA) Processes (2016)Google Scholar
  11. 11.
    Chu, C.K., Marron, J.S.: Comparison of two bandwidth selectors with dependent errors. Ann. Stat. 19(4), 1906–1918 (1991)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Devroye, L., Wagner, T.: Distribution-free performance bounds for potential function rules. IEEE Trans. Inf. Theory 25(5), 601–604 (1979)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Diggle, P.: Analysis of Longitudinal Data. Oxford University Press, Oxford (2002)Google Scholar
  14. 14.
    Gasch, C.K., Hengl, T., Gräler, B., Meyer, H., Magney, T.S., Brown, D.J.: Spatio-temporal interpolation of soil water, temperature, and electrical conductivity in 3D+ T: the cook agronomy farm data set. Spat. Stat. 14, 70–90 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Geisser, S.: The predictive sample reuse method with applications. J. Am. Stat. Assoc. 70(350), 320–328 (1975)CrossRefGoogle Scholar
  16. 16.
    Haberlandt, U.: Geostatistical interpolation of hourly precipitation from rain gauges and radar for a large-scale extreme rainfall event. J. Hydrol. 332(1–2), 144–157 (2007).  https://doi.org/10.1016/j.jhydrol.2006.06.028CrossRefGoogle Scholar
  17. 17.
    Hengl, T.: GSIF: Global Soil Information Facilities (2017). R package version 0.5-4Google Scholar
  18. 18.
    Meyer, H., Reudenbach, C., Hengl, T., Katurji, M., Nauss, T.: Improving performance of spatio-temporal machine learning models using forward feature selection and target-oriented validation. Environ. Model. Softw. 101, 1–9 (2018).  https://doi.org/10.1016/j.envsoft.2017.12.001CrossRefGoogle Scholar
  19. 19.
    Modha, D.S., Masry, E.: Prequential and cross-validated regression estimation. Mach. Learn. 33(1), 5–39 (1998).  https://doi.org/10.1109/ISIT.1998.708964CrossRefzbMATHGoogle Scholar
  20. 20.
    Mozetič, I., Torgo, L., Cerqueira, V., Smailović, J.: How to evaluate sentiment classifiers for Twitter time-ordered data? PLoS One 13(3), 1–20 (2018).  https://doi.org/10.1371/journal.pone.0194317CrossRefGoogle Scholar
  21. 21.
    Ohashi, O., Torgo, L.: Wind speed forecasting using spatio-temporal indicators. In: Proceedings of the 20th European Conference on Artificial Intelligence, pp. 975–980. IOS Press (2012)Google Scholar
  22. 22.
    Opsomer, J., Wang, Y., Yang, Y.: Nonparametric regression with correlated errors. Stat. Sci. 16(2), 134–153 (2001).  https://doi.org/10.1214/ss/1009213287MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Pebesma, E.: spacetime: Spatio-temporal data in R. J. Stat. Softw. 51(7), 1–30 (2012). http://www.jstatsoft.org/v51/i07/CrossRefGoogle Scholar
  24. 24.
    Pfeifer, P.E., Deutsch, S.J.: A three-stage iterative procedure for space-time modeling. Technometrics 22(1), 35–47 (1980)CrossRefGoogle Scholar
  25. 25.
    Pravilovic, S., Appice, A., Malerba, D.: Leveraging correlation across space and time to interpolate geophysical data via CoKriging. Int. J. Geogr. Inf. Sci. 32(1), 191–212 (2018).  https://doi.org/10.1080/13658816.2017.1381338CrossRefGoogle Scholar
  26. 26.
    R Core Team: R: a language and environment for statistical computing. In: R Foundation for Statistical Computing, Austria, Vienna (2017)Google Scholar
  27. 27.
    Racine, J.: Consistent cross-validatory model-selection for dependent data: hv-block cross-validation. J. Econom. 99(1), 39–61 (2000)CrossRefGoogle Scholar
  28. 28.
    Roberts, D.R., et al.: Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40(8), 913–929 (2017)CrossRefGoogle Scholar
  29. 29.
    Snijders, T.A.B.: On cross-validation for predictor evaluation in time series. In: Dijkstra, T.K. (ed.) On Model Uncertainty and its Statistical Implications. LNE, pp. 56–69. Springer, Berlin, Heidelberg (1988).  https://doi.org/10.1007/978-3-642-61564-1_4CrossRefGoogle Scholar
  30. 30.
    Stone, M.: Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. B 111–147 (1974)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Tashman, L.J.: Out-of-sample tests of forecasting accuracy : an analysis and review. Int. J. Forecast. 16(4), 437–450 (2000)CrossRefGoogle Scholar
  32. 32.
    Torgo, L.: Data Mining with R: Learning with Case Studies. CRC Press, Boca Raton (2016)Google Scholar
  33. 33.
    Trachsel, M., Telford, R.J.: Estimating unbiased transfer-function performances in spatially structured environments. Clim. Past 12(5), 1215–1223 (2016)CrossRefGoogle Scholar
  34. 34.
    Wright, M.N., Ziegler, A.: Ranger: a fast implementation of random forests for high dimensional data in C++ and R. J. Stat. Softw. 77(1), 1–17 (2017).  https://doi.org/10.18637/jss.v077.i01CrossRefGoogle Scholar
  35. 35.
    Zheng, Y., Liu, F., Hsieh, H.P.: U-Air: when urban air quality inference meets big data. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery Data Mining, pp. 1436–1444. ACM (2013).  https://doi.org/10.1145/2487575.2488188

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mariana Oliveira
    • 1
    • 3
    Email author
  • Luís Torgo
    • 1
    • 2
    • 3
  • Vítor Santos Costa
    • 1
    • 3
  1. 1.University of PortoPortoPortugal
  2. 2.Dalhousie UniversityHalifaxCanada
  3. 3.INESC TECPortoPortugal

Personalised recommendations