Advertisement

Domain Adaption in One-Shot Learning

  • Nanqing DongEmail author
  • Eric P. Xing
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11051)

Abstract

Recent advances in deep learning lead to breakthroughs in many machine learning tasks. Due to the data-dri ven nature of deep learning, the training procedure often requires large amounts of manually annotated data, which is often unavailable. One-shot learning aims to categorize the new classes unseen in the training set, given only one example of each new class. Can we transfer knowledge learned by one-shot learning from one domain to another? In this paper, we formulate the problem of domain adaption in one-shot image classification, where the training data and test data come from similar but different distributions. We propose a domain adaption framework based on adversarial networks. This framework is generalized for situations where the source and target domain have different labels. We use a policy network, inspired by human learning behaviors, to effectively select samples from the source domain in the training process. This sampling strategy can further improve the domain adaption performance. We investigate our approach in one-shot image classification tasks on different settings and achieve better results than previous methods. Code related to this paper is available at: https://github.com/NanqingD/DAOSL.

Keywords

One-shot learning Domain adaption Adversarial networks Reinforcement learning Distance metric learning Cognitive science 

References

  1. 1.
    Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation, pp. 265–283. USENIX Association (2016)Google Scholar
  2. 2.
    Ben-David, S., Blitzer, J., Crammer, K., Pereira, F.: Analysis of representations for domain adaptation. In: Advances in Neural Information Processing Systems, pp. 137–144 (2007)Google Scholar
  3. 3.
    Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: In: International Conference on Machine Learning, pp. 41–48. ACM (2009)Google Scholar
  4. 4.
    Biederman, I.: Recognition-by-components: a theory of human image understanding. Psychol. Rev. 94(2), 115 (1987)CrossRefGoogle Scholar
  5. 5.
    Cohen, G., Afshar, S., Tapson, J., van Schaik, A.: Emnist: an extension of mnist to handwritten letters. arXiv preprint arXiv:1702.05373 (2017)
  6. 6.
    Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Li, F.F.: Imagenet: a large-scale hierarchical image database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)Google Scholar
  7. 7.
    Dong, N., Kampffmeyer, M., Liang, X., Wang, Z., Dai, W., Xing, E.: Unsupervised domain adaptation for automatic estimation of cardiothoracic ratio. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 544–552. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00934-2_61CrossRefGoogle Scholar
  8. 8.
    Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)CrossRefGoogle Scholar
  9. 9.
    Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2030–2096 (2016)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Gluck, M.A., Mercado, E., Myers, C.E.: Learning and memory: From brain to behaviorGoogle Scholar
  11. 11.
    Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)Google Scholar
  12. 12.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)Google Scholar
  13. 13.
    Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRefGoogle Scholar
  14. 14.
    Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: In: International Conference on Machine Learning, pp. 448–456 (2015)Google Scholar
  15. 15.
    Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (2015)Google Scholar
  16. 16.
    Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks for one-shot image recognition. In: International Conference on Machine Learning Deep Learning Workshop (2015)Google Scholar
  17. 17.
    Lake, B., Salakhutdinov, R., Gross, J., Tenenbaum, J.: One shot learning of simple visual concepts. In: Proceedings of the Annual Meeting of the Cognitive Science Society, vol. 33 (2011)Google Scholar
  18. 18.
    Li, F.F., Fergus, R., Perona, P.: One-shot learning of object categories. IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 594–611 (2006)CrossRefGoogle Scholar
  19. 19.
    Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. In: International Conference on Learning Representations (2015)Google Scholar
  20. 20.
    Motiian, S., Jones, Q., Iranmanesh, S., Doretto, G.: Few-shot adversarial domain adaptation. In: Advances in Neural Information Processing Systems, pp. 6673–6683 (2017)Google Scholar
  21. 21.
    Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning. In: In: International Conference on Learning Representations (2017)Google Scholar
  22. 22.
    Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)Google Scholar
  23. 23.
    Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., Lillicrap, T.: Meta-learning with memory-augmented neural networks. In: International Conference on Machine Learning, pp. 1842–1850 (2016)Google Scholar
  24. 24.
    Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: Advances in Neural Information Processing Systems, pp. 4077–4087 (2017)Google Scholar
  25. 25.
    Sutton, R.S., Barto, A.G.: Reinforcement learning: an introduction. IEEE Trans. Neural Netw. 9(5), 1054–1054 (1998)CrossRefGoogle Scholar
  26. 26.
    Sutton, R.S., McAllester, D.A., Singh, S.P., Mansour, Y.: Policy gradient methods for reinforcement learning with function approximation. In: Advances in Neural Information Processing Systems, pp. 1057–1063 (2000)Google Scholar
  27. 27.
    Thrun, S.: Lifelong learning algorithms. In: Thrun, S., Pratt, L. (eds.) Learning to Learn, pp. 181–209. Springer, Boston (1998).  https://doi.org/10.1007/978-1-4615-5529-2_8CrossRefzbMATHGoogle Scholar
  28. 28.
    Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2962–2971. IEEE (2017)Google Scholar
  29. 29.
    Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for one shot learning. In: Advances in Neural Information Processing Systems, pp. 3630–3638 (2016)Google Scholar
  30. 30.
    Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 8, 229–256 (1992)zbMATHGoogle Scholar
  31. 31.
    Xing, E.P., Jordan, M.I., Russell, S.J., Ng, A.Y.: Distance metric learning with application to clustering with side-information. In: Advances in Neural Information Processing Systems, pp. 521–528 (2003)Google Scholar
  32. 32.
    Zhang, K., Schölkopf, B., Muandet, K., Wang, Z.: Domain adaptation under target and conditional shift. In: International Conference on Machine Learning, pp. 819–827 (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Cornell UniversityIthacaUSA
  2. 2.Petuum Inc.PittsburghUSA

Personalised recommendations