Advertisement

Time Warp Invariant Dictionary Learning for Time Series Clustering: Application to Music Data Stream Analysis

  • Saeed Varasteh YazdiEmail author
  • Ahlame Douzal-Chouakria
  • Patrick Gallinari
  • Manuel Moussallam
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11051)

Abstract

This work proposes a time warp invariant sparse coding and dictionary learning framework for time series clustering, where both input samples and atoms define time series of different lengths that involve variable delays. For that, first an \(l_0\) sparse coding problem is formalised and a time warp invariant orthogonal matching pursuit based on a new cosine maximisation time warp operator is proposed. A dictionary learning under time warp is then formalised and a gradient descent solution is developed. Lastly, a time series clustering based on the time warp sparse coding and dictionary learning is presented. The proposed approach is evaluated and compared to major alternative methods on several public datasets, with an application to deezer music data stream clustering. Data related to this paper are available at: The link to the data and the evaluating algorithms are provided in the paper. Code related to this paper is available at: The link will be provided at the first author personal website (http://ama.liglab.fr/~varasteh/).

Keywords

Time series clustering Dictionary learning Sparse coding 

Notes

Acknowledgments

This work is supported by the French National Research Agency (ANR-Locust project) and Bpifrance funds in the frame of the French National PIA Program.

References

  1. 1.
    Frank, A., Asuncion, A.: UCI machine learning repository (2010). http://archive.ics.uci.edu/ml/
  2. 2.
    Aharon, M., Elad, M., Bruckstein, A.: k-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)CrossRefGoogle Scholar
  3. 3.
    Bradley, P.S., Mangasarian, O.L.: K-plane clustering. J. Glob. Optim. 16(1), 23–32 (2000)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chen, M., AlRegib, G., Juang, B.H.: 6DMG: A new 6D motion gesture database. In: Proceedings of the 3rd Multimedia Systems Conference, pp. 83–88. ACM (2012)Google Scholar
  5. 5.
    Elhamifar, E., Vidal, R.: Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2765–2781 (2013)CrossRefGoogle Scholar
  6. 6.
    Engan, K., Aase, S.O., Husoy, J.H.: Method of optimal directions for frame design. In: Proceedings of the 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 5, pp. 2443–2446. IEEE (1999)Google Scholar
  7. 7.
    Goldberger, A.L., et al.: Physiobank, physiotoolkit, and physionet. Circulation 101(23), e215–e220 (2000)CrossRefGoogle Scholar
  8. 8.
    Keogh, E.: The UCR time series data mining archive (2006). http://www.cs.ucr.edu/~eamonn/
  9. 9.
    Lee, H., Battle, A., Raina, R., Ng, A.Y.: Efficient sparse coding algorithms. In: Advances in Neural Information Processing Systems, pp. 801–808 (2007)Google Scholar
  10. 10.
    Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Discriminative learned dictionaries for local image analysis. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)Google Scholar
  11. 11.
    Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Advances in Neural Information Processing Systems, pp. 849–856 (2002)Google Scholar
  12. 12.
    Ramirez, I., Sprechmann, P., Sapiro, G.: Classification and clustering via dictionary learning with structured incoherence and shared features. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3501–3508. IEEE (2010)Google Scholar
  13. 13.
    Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66(336), 846–850 (1971)CrossRefGoogle Scholar
  14. 14.
    Tibshirani, R.J., et al.: The LASSO problem and uniqueness. Electron. J. Stat. 7, 1456–1490 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Tropp, J.A.: Greed is good: algorithmic results for sparse approximation. IEEE Trans. Inf. Theory 50(10), 2231–2242 (2004)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Tseng, P.: Nearest q-flat to m points. J. Optim. Theory Appl. 105(1), 249–252 (2000)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Yazdi, S.V., Douzal-Chouakria, A.: Time warp invariant kSVD: sparse coding and dictionary learning for time series under time warp. Pattern Recognit. Lett. 112, 1–8 (2018).  https://doi.org/10.1016/j.patrec.2018.05.017CrossRefGoogle Scholar
  18. 18.
    You, C., Robinson, D., Vidal, R.: Scalable sparse subspace clustering by orthogonal matching pursuit. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3918–3927 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Saeed Varasteh Yazdi
    • 1
    Email author
  • Ahlame Douzal-Chouakria
    • 1
  • Patrick Gallinari
    • 2
  • Manuel Moussallam
    • 3
  1. 1.Univ. Grenoble Alpes, CNRS, Grenoble INP, LIGGrenobleFrance
  2. 2.Université Pierre et Marie CurieParisFrance
  3. 3.DeezerParisFrance

Personalised recommendations