Advertisement

A Discriminative Model for Identifying Readers and Assessing Text Comprehension from Eye Movements

  • Silvia MakowskiEmail author
  • Lena A. Jäger
  • Ahmed Abdelwahab
  • Niels Landwehr
  • Tobias Scheffer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11051)

Abstract

We study the problem of inferring readers’ identities and estimating their level of text comprehension from observations of their eye movements during reading. We develop a generative model of individual gaze patterns (scanpaths) that makes use of lexical features of the fixated words. Using this generative model, we derive a Fisher-score representation of eye-movement sequences. We study whether a Fisher-SVM with this Fisher kernel and several reference methods are able to identify readers and estimate their level of text comprehension based on eye-tracking data. While none of the methods are able to estimate text comprehension accurately, we find that the SVM with Fisher kernel excels at identifying readers.

Notes

Acknowledgments

This work was partially funded by the German Science Foundation under grants SFB1294, SFB1287, and LA3270/1-1, and by the German Federal Ministry of Research and Education under grant 16DII116-DII.

References

  1. 1.
    Kliegl, R., Nuthmann, A., Engbert, R.: Tracking the mind during reading: the influence of past, present, and future words on fixation durations. J. Exp. Psychol. Gen. 135(1), 12–35 (2006)CrossRefGoogle Scholar
  2. 2.
    Rayner, K.: Eye movements in reading and information processing: 20 years of research. Psychol. Bull. 124(3), 372–422 (1998)CrossRefGoogle Scholar
  3. 3.
    Erdmann, B., Dodge, R.: Psychologische Untersuchungen über das Lesen auf experimenteller Grundlage. Niemeyer, Halle (1898)Google Scholar
  4. 4.
    Huey, E.B.: The Psychology and Pedagogy of Reading. The Macmillan Company, New York (1908)Google Scholar
  5. 5.
    Afflerbach, P. (ed.): Handbook of Individual Differences in Reading. Routledge, New York (2015)Google Scholar
  6. 6.
    Holland, C., Komogortsev, O.V.: Biometric identification via eye movement scanpaths in reading. In: Proceedings of the 2011 International Joint Conference on Biometrics, pp. 1–8 (2011)Google Scholar
  7. 7.
    Landwehr, N., Arzt, S., Scheffer, T., Kliegl, R.: A model of individual differences in gaze control during reading. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, pp. 1810–1815 (2014)Google Scholar
  8. 8.
    Abdelwahab, A., Kliegl, R., Landwehr, N.: A semiparametric model for Bayesian reader identification. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing (2016)Google Scholar
  9. 9.
    Just, M.A., Carpenter, P.A.: A theory of reading: from eye fixations to comprehension. Psychol. Rev. 87(4), 329–354 (1980)CrossRefGoogle Scholar
  10. 10.
    Frazier, L., Rayner, K.: Making and correcting errors during sentence comprehension: eye movements in the analysis of structurally ambiguous sentences. Cogn. Psychol. 14(2), 178–210 (1982)CrossRefGoogle Scholar
  11. 11.
    Staub, A., Rayner, K., Pollatsek, A., Hyönä, J., Majewski, H.: The time course of plausibility effects on eye movements in reading: evidence from noun-noun compounds. J. Exp. Psychol. Learn. Mem. Cogn. 33(6), 1162–1169 (2007)CrossRefGoogle Scholar
  12. 12.
    Kaakinen, J.K., Hyönä, J.: Perspective effects in repeated reading: an eye movement study. Mem. Cogn. 35, 1323–1336 (2007)CrossRefGoogle Scholar
  13. 13.
    Rayner, K., Chace, K.H., Slattery, T.J., Ashby, J.: Eye movements as reflections of comprehension processes in reading. Sci. Stud. Read. 10(3), 241–255 (2006)CrossRefGoogle Scholar
  14. 14.
    Rayner, K., Sereno, S.C.: Eye movements in reading: psycholinguistic studies. In: Gernsbacher, M.A. (ed.) Handbook of Psycholinguistics, pp. 57–81. Academic Press, San Diego (1994)Google Scholar
  15. 15.
    Clifton, C., Staub, A., Rayner, K.: Eye movements in reading words and sentences. In: Van Gompel, R.P., Fischer, M.H., Murray, W.S., Hill, R.L. (eds.) Eye Movements: A Window on Mind and Brain, pp. 341–372. Elsevier, Oxford (2007)CrossRefGoogle Scholar
  16. 16.
    Jacobson, J.Z., Dodwell, P.C.: Saccadic eye movements during reading. Brain Lang. 8, 303–314 (1979)CrossRefGoogle Scholar
  17. 17.
    Rayner, K., Pollatsek, A.: The Psychology of Reading. Prentice Hall, Englewood Cliffs (1989)Google Scholar
  18. 18.
    Rayner, K., Warren, T., Juhasz, B.J., Liversedge, S.P.: The effect of plausibility on eye movements in reading. J. Exp. Psychol.: Learn. Mem. Cogn. 30, 1290–1301 (2004)Google Scholar
  19. 19.
    Warren, T., McConnell, K., Rayner, K.: Effects of context on eye movements when reading about possible and impossible events. J. Exp. Psychol. Learn. Mem. Cogn. 34, 1001–1007 (2008)CrossRefGoogle Scholar
  20. 20.
    Copeland, L., Gedeon, T.: Measuring reading comprehension using eye movements. In: Proceedings of the 4th IEEE International Conference on Cognitive Infocommunication, pp. 791–796 (2013)Google Scholar
  21. 21.
    Copeland, L., Gedeon, T., Mendis, S.: Predicting reading comprehension scores from eye movements using artificial neural networks and fuzzy output error. Artif. Intell. Res. 3(3), 35–48 (2014)CrossRefGoogle Scholar
  22. 22.
    Copeland, L., Gedeon, T., Mendis, S.: Fuzzy output error as the performance function for training artificial neural networks to predict reading comprehension from eye gaze. In: Loo, C.K., Yap, K.S., Wong, K.W., Teoh, A., Huang, K. (eds.) ICONIP 2014, Part I. LNCS, vol. 8834, pp. 586–593. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-12637-1_73CrossRefGoogle Scholar
  23. 23.
    Underwood, G., Hubbard, A., Wilkinson, H.: Eye fixations predict reading comprehension: the relationships between reading skill, reading speed, and visual inspection. Lang. Speech 33(1), 69–81 (1990)CrossRefGoogle Scholar
  24. 24.
    Dixon, W.R.: Studies in the psychology of reading. In: Morse, W.S., Ballantine, P.A., Dixon, W.R. (eds.) University of Michigan Monographs in Education No. 4. The University of Michigan Press, Ann Arbor (1951)Google Scholar
  25. 25.
    Rayner, K., Pollatsek, A., Ashby, J., Clifton Jr., C.: Psychology of Reading. Psychology Press, New York (2012)Google Scholar
  26. 26.
    Komogortsev, O.V., Jayarathna, S., Aragon, C.R., Mahmoud, M.: Biometric identification via an oculomotor plant mathematical model. In: Proceedings of the 2010 Symposium on Eye-Tracking Research and Applications, pp. 1–4 (2010)Google Scholar
  27. 27.
    Rigas, I., Economou, G., Fotopoulos, S.: Human eye movements as a trait for biometrical identification. In: Proceedings of the IEEE 5th International Conference on Biometrics: Theory, Applications and Systems (2012)Google Scholar
  28. 28.
    Zhang, Y., Juhola, M.: On biometric verification of a user by means of eye movement data mining. In: Proceedings of the 2nd International Conference on Advances in Information Mining and Management, pp. 85–90 (2012)Google Scholar
  29. 29.
    Bednarik, R., Kinnunen, T., Mihaila, A., Fränti, P.: Eye-movements as a biometric. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 780–789. Springer, Heidelberg (2005).  https://doi.org/10.1007/11499145_79CrossRefGoogle Scholar
  30. 30.
    Rigas, I., Economou, G., Fotopoulos, S.: Biometric identification based on the eye movements and graph matching techniques. Pattern Recogn. Lett. 33(6), 786–792 (2012)CrossRefGoogle Scholar
  31. 31.
    Rigas, I., Komogortsev, O., Shadmehr, R.: Biometric recognition via eye movements: saccadic vigor and acceleration cues. ACM Trans. Appl. Percept. 13(2), 1–21 (2016)CrossRefGoogle Scholar
  32. 32.
    Morrison, R.E., Rayner, K.: Saccade size in reading depends upon character spaces and not visual angle. Percept. Psychophys. 30, 395–396 (1981)CrossRefGoogle Scholar
  33. 33.
    Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (2006).  https://doi.org/10.1007/978-3-540-35447-5CrossRefzbMATHGoogle Scholar
  34. 34.
    Jaakkola, T., Haussler, D.: Exploiting generative models in discriminative classifiers. In: Advances in Neural Information Processing Systems, pp. 487–493 (1999)Google Scholar
  35. 35.
    Rayner, K., McConkie, G.W.: What guides a reader’s eye movements. Vis. Res. 16, 829–837 (1976)CrossRefGoogle Scholar
  36. 36.
    Rayner, K., Duffy, S.A.: Parafoveal word processing during eye fixations in reading: Effects of word frequency. Percept. Psychophys. 40, 431–440 (1986)CrossRefGoogle Scholar
  37. 37.
    Kliegl, R., Grabner, E., Rolfs, M., Engbert, R.: Length, frequency, and predictability effects of words on eye movements in reading. Eur. J. Cogn. Psychol. 16(1–2), 262–284 (2004)CrossRefGoogle Scholar
  38. 38.
    Berlin-Brandenburg Academy of Science, University of Potsdam (2011). http://dlexdb.de

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Silvia Makowski
    • 1
    Email author
  • Lena A. Jäger
    • 1
    • 2
    • 3
  • Ahmed Abdelwahab
    • 1
    • 4
  • Niels Landwehr
    • 1
    • 4
  • Tobias Scheffer
    • 1
  1. 1.Department of Computer ScienceUniversity of PotsdamPotsdamGermany
  2. 2.Department of LinguisticsUniversity of PotsdamPotsdamGermany
  3. 3.Weizenbaum Institute for the Networked SocietyBerlinGermany
  4. 4.Leibniz Institute for Agricultural Engineering and BioeconomyPotsdamGermany

Personalised recommendations