Group Anomaly Detection Using Deep Generative Models

  • Raghavendra Chalapathy
  • Edward TothEmail author
  • Sanjay Chawla
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11051)


Unlike conventional anomaly detection research that focuses on point anomalies, our goal is to detect anomalous collections of individual data points. In particular, we perform group anomaly detection (GAD) with an emphasis on irregular group distributions (e.g. irregular mixtures of image pixels). GAD is an important task in detecting unusual and anomalous phenomena in real-world applications such as high energy particle physics, social media and medical imaging. In this paper, we take a generative approach by proposing deep generative models: Adversarial autoencoder (AAE) and variational autoencoder (VAE) for group anomaly detection. Both AAE and VAE detect group anomalies using point-wise input data where group memberships are known a priori. We conduct extensive experiments to evaluate our models on real world datasets. The empirical results demonstrate that our approach is effective and robust in detecting group anomalies. Code related to this paper is available at:,,,


Group anomaly detection Adversarial Variational Auto-encoders 


  1. 1.
    Azhar, R., Tuwohingide, D., Kamudi, D., Suciati, N., Sarimuddin: Batik image classification using SIFT feature extraction, bag of features and support vector machine. Procedia Comput. Sci. 72, 24–30 (2015). The Third Information Systems International Conference 2015CrossRefGoogle Scholar
  2. 2.
    Abadi, M., et al.: Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)
  3. 3.
    An, J., Cho, S.: Variational autoencoder based anomaly detection using reconstruction probability. SNU Data Mining Center, Technical report (2015)Google Scholar
  4. 4.
    Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. 41(3), 15:1–15:58 (2009)CrossRefGoogle Scholar
  5. 5.
    Chollet, F., et al.: Keras (2015).
  6. 6.
    Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUs). arXiv preprint arXiv:1511.07289 (2015)
  7. 7.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2005, vol. 1, pp. 886–893. IEEE (2005)Google Scholar
  8. 8.
    Davis, J., Goadrich, M.: The relationship between precision-recall and ROC curves. In: International Conference on Machine Learning (ICML) (2006)Google Scholar
  9. 9.
    Doersch, C.: Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908 (2016)
  10. 10.
    Hodge, V.J., Austin, J.: A survey of outlier detection methodologies. Artif. Intell. Rev. 22, 2004 (2004)CrossRefGoogle Scholar
  11. 11.
    Image source license: CC public domain (2018).
  12. 12.
    Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)
  13. 13.
    Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
  14. 14.
    Kingma, D.P., Welling, M.: Auto-encoding variational Bayes (Ml), pp. 1–14 (2013)Google Scholar
  15. 15.
    Kiran, B., Thomas, D.M., Parakkal, R.: An overview of deep learning based methods for unsupervised and semi-supervised anomaly detection in videos. ArXiv e-prints arXiv:1801.03149v2, January 2018
  16. 16.
    Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Technical report (2009)Google Scholar
  17. 17.
    Lopez-Paz, D., Sra, S., Smola, A.J., Ghahramani, Z., Schölkopf, B.: Randomized nonlinear component analysis. In: International Conference on Machine Learning (ICML) (2014)Google Scholar
  18. 18.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: The Proceedings of the Seventh IEEE International Conference on Computer vision, vol. 2, pp. 1150–1157. IEEE (1999)Google Scholar
  19. 19.
    Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adversarial autoencoders. arXiv preprint arXiv:1511.05644 (2015)
  20. 20.
    Muandet, K., Schölkopf, B.: One-class support measure machines for group anomaly detection. In: Conference on Uncertainty in Artificial Intelligence (2013)Google Scholar
  21. 21.
    Perera, P., Patel, V.M.: Learning deep features for one-class classification. ArXiv e-prints arXiv:1801.05365v1, January 2018
  22. 22.
    Quellec, G., Lamard, M., Cozic, M., Coatrieux, G., Cazuguel, G.: Multiple-instance learning for anomaly detection in digital mammography. IEEE Trans. Med. Imaging 35(7), 1604–1614 (2016)CrossRefGoogle Scholar
  23. 23.
    Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: Niethammer, M., Styner, M., Aylward, S., Zhu, H., Oguz, I., Yap, P.-T., Shen, D. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 146–157. Springer, Cham (2017). Scholar
  24. 24.
    Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural Comput. 13(7), 1443–1471 (2001)CrossRefGoogle Scholar
  25. 25.
    Soleimani, H., Miller, D.J.: ATD: anomalous topic discovery in high dimensional discrete data. IEEE Trans. Knowl. Data Eng. 28(9), 2267–2280 (2016)CrossRefGoogle Scholar
  26. 26.
    Sultani, W., Chen, C., Shah, M.: Real-World Anomaly Detection in Surveillance Videos. ArXiv e-prints arXiv:1801.04264, January 2018
  27. 27.
    Toth, E., Chawla, S.: Group deviation detection: a survey. ACM Comput. Surv. (2018). (Forthcoming)Google Scholar
  28. 28.
    Xiong, L.: On Learning from Collective Data. In: Dissertations, p. 560 (2013)Google Scholar
  29. 29.
    Xiong, L., Póczos, B., Schneider, J.: Group anomaly detection using flexible genre models. In: Advances in Neural Information Processing Systems, vol. 24, pp. 1071–1079. Curran Associates Inc. (2011)Google Scholar
  30. 30.
    Xiong, L., Póczos, B., Schneider, J., Connolly, A., VanderPlas, J.: Hierarchical probabilistic models for group anomaly detection. In: AISTATS 2011 (2011)Google Scholar
  31. 31.
    Xiong, L., Póczos, B., Schneider, J.G.: Group anomaly detection using flexible genre models. In: Advances in Neural Information Processing Systems, pp. 1071–1079 (2011)Google Scholar
  32. 32.
    Xu, H., et al.: Unsupervised anomaly detection via variational auto-encoder for seasonal KPIs in web applications. arXiv preprint arXiv:1802.03903 (2018)
  33. 33.
    Yu, R., Qiu, H., Wen, Z., Lin, C.Y., Liu, Y.: A Survey on Social Media Anomaly Detection. ArXiv e-prints arXiv:1601.01102, January 2016
  34. 34.
    Yu, R., He, X., Liu, Y.: GLAD: group anomaly detection in social media analysis. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2014, pp. 372–381. ACM, New York (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Raghavendra Chalapathy
    • 1
  • Edward Toth
    • 2
    Email author
  • Sanjay Chawla
    • 3
  1. 1.The University of Sydney and Capital Markets CRCSydneyAustralia
  2. 2.School of Information TechnologiesThe University of SydneySydneyAustralia
  3. 3.Qatar Computing Research Institute, HBKUDohaQatar

Personalised recommendations