Advertisement

28 Mathematical Demography

  • Scott M. LynchEmail author
  • Kenneth C. Land
  • Yang Claire Yang
  • Zeng Yi
Chapter
Part of the Handbooks of Sociology and Social Research book series (HSSR)

Abstract

Mathematical demography is the subfield of demography that is concerned with developing and refining measures and methods for studying population composition and change. Historically, demographers used population level data to compute measures of the key components of population change: fertility, mortality, and migration. However, the field has expanded considerably over the last half century to include predictors and consequences of demographic change. Sample data is now commonly used by demographers, and statistical methods are commonly used in conjunction with mathematical methods. In this chapter, we define key mathematical concepts that form the basis for historical and contemporary demographic analyses, including the population balancing equation and rates. We discuss the single decrement life table and its extensions to multiple decrements and multiple living states. Next, we discuss the stationary population theory that underlies life table computations and show its extension to stable and nonstable populations. Finally, we discuss several topics of contemporary concern, including population momentum, household projection methods, quantum and tempo adjustments, and methods for cohort analysis.

Keywords

Population balancing equation Demographic rate Hazard rate Survivor function Single-decrement life table Multiple-decrement life table Multistate life table Sullivan’s method Stationary population Stable population theory Nonstable population theory Multistate household projections Age-period-cohort methods 

References

  1. Arias, E, Heron M, & Xu JQ. (2017). United States life tables, 2014. National vital statistics reports 66(4). Hyattsville, MD: National Center for Health Statistics.Google Scholar
  2. Bean, F.D. (1983). The Baby Boom and its explanations. The Sociological Quarterly 24(3), 353–365.CrossRefGoogle Scholar
  3. Bell, M. & Cooper, J. (1990). Household forecasting: Replacing the headship rate model. Paper presented at the Fifth National Conference, Australian Population Association, Melbourne, November.Google Scholar
  4. Bennett, N.G. & S. Horiuchi. (1981). Estimating the completeness of death registration in a closed population. Population Index 42, 207–21.CrossRefGoogle Scholar
  5. Berard-Chagnon, J. (2015). Using tax data to estimate the number of families and households in Canada. In N. N. Hoque & L. B. Potter (Eds.), Emerging techniques in applied demography (pp. 137–153). Springer: Dordrecht, The Netherlands.Google Scholar
  6. Blue, L. and Espenshade, T.J. (2011). Population momentum across the demographic transition. Population Development and Review 37(4), 721–747.CrossRefGoogle Scholar
  7. Bongaarts, J. & R.A. Bulatao. (1999). Completing the demographic transition. Population and Development Review 25, 515–29.CrossRefGoogle Scholar
  8. Bongaarts, J. & G. Feeney. (1998). On the quantum and tempo of fertility. Population and Development Review 24, 271–291.CrossRefGoogle Scholar
  9. Cai, L., Hayward, MD, Saito, Y., Lubitz, J., Hagedorn, A., & Crimmins, E. (2010). Estimation of multi-state life table functions and their variability from complex survey data using the SPACE program. Demographic Research 22(6), 129–158.CrossRefGoogle Scholar
  10. Chiang, C.-L. (1960). Stochastic study of the life table and its applications, II: Sample variance of the observed expectations of life and other biometric functions. Human Biology 32, 221–238.Google Scholar
  11. Chiang, C.-L. (1972). On constructing current life tables. Journal of the American Statistical Association 67, 538–541.Google Scholar
  12. Christiansen, S.G, & N. Keilman (2013). Probabilistic household forecasts based on register data – the case of Denmark and Finland. Demographic Research, 28, 1263–1302.CrossRefGoogle Scholar
  13. Coale, A.J. (1974). The history of human population. Scientific American 123(3), 41–51.Google Scholar
  14. Cox, D. R. (1972). Regression models and life-tables (with discussion). Journal of the Royal Statistical Society B 34, 187–220.Google Scholar
  15. Crimmins, E. M., Y. Saito, & M. D. Hayward. (1993). Sullivan and multistate methods of estimating active life expectancy: Two methods, two answers. In J. M. Robine, C. D. Mathers, M. R. Bone, & I. Rommieu (eds) Calculation of Health Expectancies: Harmonization, Consensus Achieved and Future Perspectives (Pp. 155–160). Montrouge: John Libbey Eurotext.Google Scholar
  16. Dalton, M., B. O’Neill, A. Prskawetz, L. Jiang, & J. Pitkin. (2008). Population aging and future carbon emissions in the United States. Energy Economics 30, 642–675.CrossRefGoogle Scholar
  17. Ehrlich, P.R. (1968). The Population Bomb. New York: Ballantine.Google Scholar
  18. Elandt-Johnson, R. C. and N. L. Johnson. (1980). Survival models and data analysis. New York: Wiley.Google Scholar
  19. Espenshade, T. Olgiati, A., & Levin, S. (2011). On nonstable and stable population momentum. Demography 48(4), 1581–1599.CrossRefGoogle Scholar
  20. Feng, Q., Z. Wang, D. Gu, & Y. Zeng. (2011). Household vehicle consumption forecasts in the United States, 2000 to 2025. International Journal of Market Research 53(5), 593–618.CrossRefGoogle Scholar
  21. Feng, Q., J. W. Yeung, Z. Wang, & Y. Zeng. (2018). Age of retirement and human capital in an aging China, 2015–2050. European Journal of Population doi: https://doi.org/10.1007/s10680-018-9467-3.
  22. Gavrilov, L.A. & Gavrilova, N.S. (2011). Mortality measurement at advanced ages: A study of the Social Security Administration Death Master File. North American Actuarial Journal 15(3), 432–447.CrossRefGoogle Scholar
  23. Goldstein, J.R. (2002). Population momentum for gradual demographic transitions: An alternative approach. Demography 39, 65–73.CrossRefGoogle Scholar
  24. Goldstein, J.R. & G. Stecklov. (2002). Long-range population projections made simple. Population and Development Review 28, 121–41.CrossRefGoogle Scholar
  25. Gompertz, B. (1825). On the nature of the function expressive of the law of human mortality and on a new mode of determining the value of life contingencies. Philosophical Transactions of the Royal Society of London 115, 513–585.CrossRefGoogle Scholar
  26. Greenberg, B.G., J. J. Wright, & C. G. Sheps. (1950). A technique for analyzing some factors affecting the incidence of syphilis. Journal of the American Statistical Association 45, 373–399.CrossRefGoogle Scholar
  27. Hammel, E.A., Mason, C., Wachter, K.W., Wang, F., & Yang, H. (1991). Rapid population change and kinship: The effects of unstable demographic changes on Chinese kinship networks, 1750–2250. Pp. 243 271 Consequences of Rapid Population Growth in Developing Countries: Proceedings of the United Nations. New York: Taylor & Francis.Google Scholar
  28. Hayward, M. D. & W. R. Grady. (1990). Work and retirement among a cohort of older men in the United States. Demography 27, 337–356.CrossRefGoogle Scholar
  29. Hayward, M. D., Rendall, M., & Crimmins, E. (1999). Evaluating group differences in healthy life expectancy: The estimation of confidence intervals for multistate life table expectancies. Paper presented at the annual meeting of the Gerontological Society of America, San Francisco, CA.Google Scholar
  30. Heigl, Andreas. (2001). Demographic fact book. http : //www. hypovereinsbank. de/media/pdf/rese c han d efabo W elt. pdf.Google Scholar
  31. Hobcraft, John, Jane Menken, & Samuel H. Preston. (1982). Age, period, and cohort effects in demography: A review. Population Index 48, 4–43.CrossRefGoogle Scholar
  32. Hoem, Jan M. & M. S. Fong. (1976). A Markov chain model of working life tables. Working Paper No. 2, Laboratory of Actuarial Mathematics, University of Copenhagen, Denmark.Google Scholar
  33. Hullen, Gert. (2000). Projections of living arrangement, household and family structures using ProFamy. Warschau, Deutsch-polnisch-ungarisches Demographentreffen, October, 2000.Google Scholar
  34. Hullen, Gert. (2001). New macrosimulations of living arrangements and households in Germany. Paper presented at Population Association of America, 2001 Annual Meeting, March, 2001.Google Scholar
  35. Hullen, Gert. (2003). Living arrangements and households: methods and results of demographic projection. A book (reader) published by the German Federal Institute for Population Research (BIB), with Forward writhen by Charlotte Hohn, Director of BIB. http : //www. gert − hullen. privat. t − online. de/manuskripte/materialien h u 29072003. pdf.Google Scholar
  36. Imai, K. & Soneji, S. (2007). On the estimation of disability-free life expectancy. Journal of the American Statistical Association 102(480), 1199–1211.CrossRefGoogle Scholar
  37. Jiang, Leiwen & A. Kuijsten. (1999a). Effects of changing households on environment – case studies in two regions of China. Paper presented at workshop Population and Environment: Modeling and Simulating This Complex Interaction, organized by Max Planck Institute for Demographic Research at Rostock, Germany, August 12–13, 1999.Google Scholar
  38. Jiang, Leiwen & A. Kuijsten. (1999b). Household projections for two regions of China. Paper presented at the European Population Conference, the Hague, The Netherlands, August 30 – September 3, 1999.Google Scholar
  39. Jiang, L, & B. C. O’Neill. (2007). Impacts of demographic trends on US household size and structure. Population and Development Review 33(3), 567–591.CrossRefGoogle Scholar
  40. Jordan, C. W., Jr. (1975). Life contingencies. 2nd ed. Chicago: The Society of Actuaries.Google Scholar
  41. Kalbfleisch, J. D. & R. L. Prentice. (2002). The statistical analysis of failure time data (2nd ed.) New York: Wiley.Google Scholar
  42. Katz, S., L. G. Branch, M. H. Branson, J. A. Papsidero, J. C. Beck, & D. S. Greer. (1983). Active life expectancy. New England Journal of Medicine 309, 1218–1224.Google Scholar
  43. Keilman, N. (1988). Dynamic household models. In N. Keilman, A. Kuijsten, & A. Vossen (Eds.), Modelling household formation and dissolution (Pp. 123–138). Oxford: Clarendon Press.Google Scholar
  44. Keilman, N. (1994). Translation formulae for non-repeatable events. Population Studies 48, 341–357.CrossRefGoogle Scholar
  45. Keilman, N. & E. V. Imhoff. (1995). Cohort quantum as a function of time-dependent period quantum for non-repeatable events Population Studies 49, 347–352.Google Scholar
  46. Keyfitz, N. (1968). A life table that agrees with the data: II. Journal of the American Statistical Association 63, 1253–1268.CrossRefGoogle Scholar
  47. Keyfitz, N. (1970). Finding probabilities from observed rates, or how to make a life table. The American Statistician 24, 28–33.Google Scholar
  48. Keyfitz, N. (1971). On the momentum of population growth. Demography 8, 71–80.CrossRefGoogle Scholar
  49. Keyfitz, N. (1977). Introduction to the mathematics of population with revisions. Reading, Mass: Addsion-Wesley.Google Scholar
  50. Keyfitz, N. (1985). Applied mathematical demography. 2nd ed. New York: Wiley.CrossRefGoogle Scholar
  51. Kim, Y.J. & R. Schoen. (1993). Crossovers that link populations with the same vital rates. Mathematical Population Studies 4, 1–19.CrossRefGoogle Scholar
  52. Kim, Y.J. (1997). Population momentum expresses population aging. Demography 34, 421–8.CrossRefGoogle Scholar
  53. Kim, Y.J., R. Schoen, & P.S. Sarma. (1991). Momentum and the growth-free segment of a population. Demography 28, 159–76.CrossRefGoogle Scholar
  54. Kohler, H. P. & M. Philipov. (1999). Variance effects in the Bongaarts-Feeney formula. Demography 38 (1), 1–16.CrossRefGoogle Scholar
  55. Kreager, P. (1993). Histories of demography: A review article.’ Population Studies 47, 519–539.Google Scholar
  56. Kupper, Lawrence L., Joseph M. Janis, Azza Karmous, & Bernard G. Greenberg. (1985). Statistical age-period-cohort analysis: A review and critique. Journal of Chronic Disease 38, 811–30.Google Scholar
  57. Kye, B. (2014). A method of estimating number of households using the ProFamy model. Statistics Korea (Requested Research Report). (in Korean)Google Scholar
  58. Laditka, S.B. & Wolf, D.A. (1998). New methods for analyzing active life expectancy. Journal of Aging and Health 10, 214–241.CrossRefGoogle Scholar
  59. Land, K.C. & G. C. Hough, Jr. (1989). New methods for tables of school life, with applications to U.S. data from recent school years. Journal of the American Statistical Association 84 (March), 63–75.Google Scholar
  60. Land, K.C., J. M. Guralnik, & D. G. Blazer. (1994). Estimating increment-decrement life tables with multiple covariates from panel data: The case of active life expectancy. Demography 31 (May), 297–319.CrossRefGoogle Scholar
  61. Land, K.C. & A. Rogers (eds.). (1982). Multidimensional mathematical demography. New York: Academic Press.Google Scholar
  62. Lee, M.A. & Rendall, M.S. (2001). Self-employment disadvantage in the working lives of blacks and females. Population Research and Policy Review 20, 291–320.CrossRefGoogle Scholar
  63. Leslie, P. H. (1945). On the use of matrices in certain population mathematics. Biometrika 33(3), 183–212.CrossRefGoogle Scholar
  64. Leslie, P.H. (1948). Some further notes on the use of matrices in population mathematics. Biometrika 35(3–4), 213–245.CrossRefGoogle Scholar
  65. Li, N. & S. Tuljapurkar. (1999). Population momentum for gradual demographic transitions. Population Studies 53, 255–62.CrossRefGoogle Scholar
  66. Li, N. (2000). The solution of time-dependent population models. Mathematical Population Studies 7, 311–29.CrossRefGoogle Scholar
  67. Lièvre, A, Brouard, N. & Heathcote, C. (2003). The estimation of health expectancies from cross-longitudinal surveys. Mathematical Population Studies 10(4), 211–248.CrossRefGoogle Scholar
  68. Lynch, S.M. (2003). Cohort and life-course patterns in the relationship between education and health: a hierarchical approach. em Demography 40(2), 309–331.CrossRefGoogle Scholar
  69. Lynch, S.M. (2006). Explaining life course and cohort variation in the relationship between education and health: the role of income. Journal of Health and Social Behavior 47(4), 324–338.CrossRefGoogle Scholar
  70. Lynch, S.M, & Brown J.S. (2005). A new approach to estimating life tables with covariates and constructing interval estimates of life table quantities. Sociological Methodology 35, 177–225.Google Scholar
  71. Lynch, S.M. & Brown J.S. (2010). Obtaining multistate life table distributions for highly refined subpopulations from cross-sectional data: A Bayesian extension of Sullivan’s method. Demography 47(4),1053–1077.CrossRefGoogle Scholar
  72. Malthus, T.R. (1798). Essay on the Principle of Population. London: J. Johnson, in St. Paul’s Church-yard (retrieved from the web, 9/15/2018).Google Scholar
  73. Mason, A. & Racelis, R. (1992). A comparison of four methods for projecting households. International Journal of Forecasting 8, 509–527.CrossRefGoogle Scholar
  74. Mason, Karen Oppenheim, William M. Mason, H. H. Winsborough, & W. Kenneth Poole. (1973). Some methodological issues in cohort analysis of archival data. American Sociological Review 38, 242–258.CrossRefGoogle Scholar
  75. Mason, William M. & N. H. Wolfinger. (2002). Cohort analysis. In International Encyclopedia of the Social and Behavioral Sciences (pp. 151–228). New York: Elsevier.Google Scholar
  76. Masters, R.K.., R.A. Hummer, & D.A. Powers. (2012). Educational differences in U.S. adult mortality risk: a cohort perspective. American Sociological Review 77(4), 548–572.CrossRefGoogle Scholar
  77. Merli, G. (1998). Mortality in Vietnam, 1979–1989. Demography 35, 345–60.CrossRefGoogle Scholar
  78. Miyazaki, Yasuo & Stephen W. Raudenbush. (2000). Tests for linkage of multiple cohorts in an accelerated longitudinal design. Psychological Methods 5, 44–63.CrossRefGoogle Scholar
  79. Molla, MT, Wagener, DK, & Madans, JH. (2001). Summary measures of population health: methods for calculating healthy life expectancy. Healthy People Statistical Notes No. 21. National Center for Health Statistics, Hyattsville, MD.Google Scholar
  80. Morgan, S. P. & S. M. Lynch. (2001). Success and future of demography: The role of data and methods. Special Issue on Population Health and Aging: Strengthening the Dialogue between Epidemiology and Demography. Annals of the New York Academy of Sciences 954, 35–51.Google Scholar
  81. Murphy, M.. (1991). Modelling households: A synthesis. In M.J. Murphy & J. Hobcraft (Eds.), Population Research in Britain, A Supplement to Population Studies, Vol. 45 (pp. 157–176). London: Population Investigation Committee, London School of Economics.Google Scholar
  82. National Research Council. (2000). Beyond six billion: Forecasting the world’s population. Edited by J. a. R. A. B. Bongaarts. Washington, D.C.: National Academy Press.Google Scholar
  83. Oh, J. (2015). Review of recent trend in diverse methods of estimating future households. Statistics Korea (Policy Report): 1–18. (in Korean)Google Scholar
  84. O’Neill, B. C. & B. S. Chen. (2002). Demographic determinants of household energy use in the United States. Population and Development Review 28(S), 53–88.Google Scholar
  85. O’Neill, B. C. & L. Jiang. (2007). Projecting U.S. Household Changes with a New Household Model. IIASA Interim Report. IIASA, Laxenburg, Austria: IR-07-017.Google Scholar
  86. Preston, S. H. (1986). The Relation between actual and intrinsic growth rates. Population Studies 40, 343–51.CrossRefGoogle Scholar
  87. Preston, S. H. & N. Bennett. (1983). A census-based method for estimating adult mortality. Population Studies 37, 91–104.CrossRefGoogle Scholar
  88. Preston, S. H. & A. J. Coale. (1982). Age structure, growth, attrition and accession: A new synthesis. Population Index 48, 17–59.CrossRefGoogle Scholar
  89. Preston, S.H., I.T. Elo, I. Rosenwaike, & M. Hill. (1996). African-American mortality at older ages: Results of a matching study. Demography 35,1–21.CrossRefGoogle Scholar
  90. Preston, S.H. & M. Guillot. (1997). Population dynamics in an age of declining fertility. Genus 53, 15–31.Google Scholar
  91. Preston, S. H., P. Heuveline, & M. Guillot. (2000). Demography: Measuring and modeling population processes. Malden, MA: Blackwell.Google Scholar
  92. Preston, S. H., N. Keyfitz, & R. Schoen. (1972). Causes of death: Life tables for national populations. New York: Seminar Press.Google Scholar
  93. Prskawetz, A., L. Jiang, & B. O’Neill. (2004). Demographic composition and projections of car use in Austria. Vienna Yearbook of Population Research 2, 274–326.Google Scholar
  94. Reither, E. N., S. J. Olshansky, & Y. Yang. (2011). New forecasting methodology indicates more disease and earlier mortality ahead for today’s younger Americans. Health Affairs 30, 1562–1568.CrossRefGoogle Scholar
  95. Rogers, A. (1975). Introduction to multiregional mathematical demography. New York: ?Google Scholar
  96. Ruggles, S. (1987). Prolonged connections: The rise of the extended family in nineteenth century England and America. Madison: University of Wisconsin Press.Google Scholar
  97. Ruggles, S. (1993). Confessions of a microsimulator: Problems in modeling the demography of kinship. Historical Methods 26(4), 161–169.CrossRefGoogle Scholar
  98. Ryder, N. B. (1956). Problems of trend determination during a translation in fertility. Milbank Memorial Fund Quarterly 34(1), 5–21.CrossRefGoogle Scholar
  99. Ryder, N. B. (1959). An appraisal of fertility trends in the United States. Pp. 38–49 in Thirty Years of Research in Human Fertility: Retrospect and Prospect, 1959, New York: Milbank Memorial Fund.Google Scholar
  100. Ryder, N. B. (1964). The process of demographic translation. Demography 1, 74–82.CrossRefGoogle Scholar
  101. Ryder, N. B. (1980). Components of temporal variations in American fertility. In R. W. Hiorns (Ed.), Demographic Patterns in Developed Societies (pp. 15–54). London: Taylor Francis.Google Scholar
  102. Ryder, N. B. (1983). Cohort and period measures of changing fertility. In Rodolfo A. Bulatao & Ronald D. Lee with Paula E. Hollerbach & John Bongaarts (Eds.), Determinants of fertility in developing countries (pp. 737–756). New York: Academic Press.Google Scholar
  103. Schoen, R. (1975). Constructing increment-decrement life tables. Demography 13, 313–324.CrossRefGoogle Scholar
  104. Schoen, R. (1978). Calculating life tables by estimating Chianga. Demography 15, 625–635.CrossRefGoogle Scholar
  105. Schoen, R. (1988). Modeling multigroup populations. New York: Plenum.CrossRefGoogle Scholar
  106. Schoen, R. & S.H. Jonsson. (2003). Modeling momentum in gradual demographic transitions. Demography 40, 621–35.CrossRefGoogle Scholar
  107. Schoen, R. (1998). Momentum under a gradual approach to zero growth. Population Studies 52, 295–99.CrossRefGoogle Scholar
  108. Schoen, R. & K. C. Land. (1979). A general algorithm for estimating a Markov-generated increment-decrement life table with applications to marital status patterns. Journal of the American Statistical Association 74, 761–776.CrossRefGoogle Scholar
  109. Schulhofer-Wohl, Sam & Yang Claire Yang. (2016). Modeling the evolution of age and cohort effects. Pp. 313 “ 336 In R. Schoen (Ed.), Dynamic Demographic Analysis (pp. 313–336). Springer.Google Scholar
  110. Smith, S. K., S. Rayer, & E. A. Smith. (2008). Aging and disability: Implications for the housing industry and housing policy in the United States. Journal of the American Planning Association 74(3), 289–306.CrossRefGoogle Scholar
  111. Smith, S. K., S. Rayer, E. A. Smith, Z. Wang, & Y. Zeng. (2012). Population aging, disability and housing accessibility: Implications for sub-national areas in the United States. Housing Studies 27(2), 252–266.CrossRefGoogle Scholar
  112. Spicer, K., Diamond, I. & Ni Bhrolchain, M. (1992). Into the twenty-first century with British households. International Journal of Forecasting 8, 529–539.CrossRefGoogle Scholar
  113. Sullivan, D. F. (1971). A single index of mortality and morbidity. HSMHA Health Report 86, 347–354.CrossRefGoogle Scholar
  114. Thatcher, A.R., V. Kannisto, & J.W. Vaupel. (1998). The force of mortality at ages 80 to 120. Odense: Odense University Press. Online at http://www.demogr.mpg.de/Papers/Books/Monograph5/ForMort.htm.Google Scholar
  115. Trussell, J. & Hammerslough, C. (1983). A hazards-model analysis of the covariates of infant and child mortality in Sri Lanka. Demography 20(1), 1–26.CrossRefGoogle Scholar
  116. United Nations. (1983). Manual X: Indirect techniques for demographic estimation. New York: United Nations.Google Scholar
  117. Van Imhoff, E. & Keilman, N. (1992). LIPRO 2.0: An application of a dynamic demographic projection model to household structure in the Netherlands. Amsterdam, Netherlands: Swets & Zeithinger.Google Scholar
  118. Van Imhoff, E. & Post, W. (1998). Microsimulation methods for population projection. New Methodological Approaches in the Social Sciences, Population: An English Selection 10(1), 97–138.Google Scholar
  119. Van Imhoff, E. & N. Keilman. (2000). On the quantum and tempo of fertility: Comment. Population and Development Review 26, 549–53.CrossRefGoogle Scholar
  120. Van Imhoff, E. (2005). LIPRO 4.0. Tutorial. The Hague: NIDI. http://www.nidi. knaw.nl/shared/content/output/lipro/LIPRO%204.0%20Tutorial.pdf.Google Scholar
  121. Wachter, K.W. (1987). Microsimulation of household cycles. In E. Bongaarts, T.K. Burch, & K.W. Wachter (Eds.), Family Demography: Methods and Applications (pp. 215–227). Oxford: Clarendon Press.Google Scholar
  122. Willekens, F.J., I. Shah, J.M. Shah & P. Ramachandran. (1982). Multistate analysis of marital status life tables: theory and application. Population Studies Vol. 36, No. 1, pp. 129–144.CrossRefGoogle Scholar
  123. Wilson, T. (2013). The sequential propensity household projection model. Demographic Research, 28, 681–712.CrossRefGoogle Scholar
  124. Wolf, D.A. (1988). Kinship and family support in aging societies. In Economic and social implications of population aging, (pp. 305–330). Population Division, United Nations.Google Scholar
  125. Yang, C. & Y. Zeng. (2000). Household projections for Taiwan. Taiwanese Journal of Sociology 24, 239–79.Google Scholar
  126. Yang, Yang, Wenjiang J. Fu, & Kenneth C. Land. (2004). A methodological comparison of age-period-cohort models: Intrinsic estimator and conventional generalized linear models. Sociological Methodology 34, 75–110.CrossRefGoogle Scholar
  127. Yang, Yang. (2006). Bayesian inference for hierarchical age-period-cohort models of repeated cross-section survey data. Sociological Methodology 36, 39–74.CrossRefGoogle Scholar
  128. Yang, Yang. (2007). Is old age depressing? Growth trajectories and cohort variations in late life depression. Journal of Health and Social Behavior 48, 16–32.CrossRefGoogle Scholar
  129. Yang, Yang & Kenneth C. Land. (2006). A mixed models approach to age-period-cohort analysis of repeated cross-section surveys: Trends in verbal test scores. Sociological Methodology 36, 75–97.CrossRefGoogle Scholar
  130. Yang, Y., & L. C. Lee. (2009). Sex and race disparities in health: Cohort variations in life course patterns. Social Forces 87, 2093–2124.CrossRefGoogle Scholar
  131. Yang, Y. & K. C. Land. (2013). Age-period-cohort analysis: New models, methods, and empirical applications. New York: Chapmen & Hall/CRC Press.CrossRefGoogle Scholar
  132. Zang, E. & Lynch, SM. (2018). Bayesian multistate life table methods for complex, high-dimensional state spaces. Paper presented at the annual meeting of the Population Association of America, Chicago, IL.Google Scholar
  133. Zeng, Y. & K.C. Land. (2001). A sensitivity analysis of the Bongaarts-Feeney new method for adjusting bias in observed period total fertility rates. Demography, 38, 17–28.CrossRefGoogle Scholar
  134. Zeng, Y. (2002). Adjusting period tempo changes “ with an extension of Ryder basic translation equation. Demography, 39, 269–285.Google Scholar
  135. Zeng, Yi, D. Gu, & K. C. Land. (2004). A new method for correcting underestimation of disabled life expectancy and application to Chinese Oldest-Old. Demography 41 (2).Google Scholar
  136. Zeng, Yi., K. C. Land, Z. Wang, & D. Gu. (2006). U.S. family household momentum and dynamics: An extension and application of the ProFamy method. Population Research and Policy Review 25(1), 1–41.CrossRefGoogle Scholar
  137. Zeng, Y. (2007). Option for fertility policy transition in China. Population and Development Review 33(2), 215–246.CrossRefGoogle Scholar
  138. Zeng, Y., Z. Wang, L. Jiang, & D. Gu. (2008). Future trend of family households and elderly living arrangement in China. Genus 64(1/2), 9–36.Google Scholar
  139. Zeng, Y. (2011). Effects of demographic and retirement-age policies on future pension deficits, with an application to China. Population and Development Review 37(3), 553–569.CrossRefGoogle Scholar
  140. Zeng, Y., L. Li, Z. Wang, H. Huang, & J. Norris. (2013). Effects of changes in household structure on future housing demand in Hebei Province, China. Genus 69(2), 85–111.Google Scholar
  141. Zeng, Y., K. C. Land, D. Gu, & Z. Wang. (2014). Household and living arrangement projections: The extended cohort-component method and applications to the U.S. and China. New York: Springer Publisher.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Scott M. Lynch
    • 1
    Email author
  • Kenneth C. Land
    • 1
  • Yang Claire Yang
    • 2
  • Zeng Yi
    • 1
  1. 1.Department of SociologyDuke UniversityDurhamUSA
  2. 2.University of North CarolinaChapel HillUSA

Personalised recommendations