Advertisement

Linear Chaos in a Tape Recorder

  • Ned J. CorronEmail author
Conference paper
Part of the Understanding Complex Systems book series (UCS)

Abstract

A mathematical model of an analog tape recorder is developed and shown to exhibit linear chaos. The playback dynamics act as a wave and are modeled by a linear partial differential equation with a simple analytic solution. This linear dynamical system is shown to exhibit three properties commonly used to define chaotic dynamics: the solution set is dense with periodic orbits, contains transitive orbits, and exhibits extreme sensitivity to initial conditions. Thus, a tape recorder provides a common physical example of linear chaos.

Notes

Acknowledgements

The author recognizes Dr. Daniel Hahs, Dr. Shawn Pethel, and Dr. Shangbing Ai for helpful discussions regarding the interpretation and presentation of the research results.

References

  1. 1.
    J.M.T. Thompson, H.B. Stewart, Nonlinear Dynamics and Chaos (Wiley, New York, 1986)Google Scholar
  2. 2.
    C.R. MacCluer, Chaos in linear distributed systems. J. Dyn. Syst. Meas. Control 114, 322 (1992)CrossRefGoogle Scholar
  3. 3.
    A. Gulisashvili, C.R. MacCluer, Linear chaos in the unforced quantum harmonic oscillator. J. Dyn. Syst. Meas. Control 118, 337 (1996)CrossRefGoogle Scholar
  4. 4.
    R. deLaubenfels, H. Emamirad, V. Protopopescu, Linear, chaos and approximation. J. Approx. Theory 105, 176 (2000)MathSciNetCrossRefGoogle Scholar
  5. 5.
    K.-G. Grosse-Erdmann, A.P. Manguillot, Linear Chaos (Springer, Berlin, 2011)CrossRefGoogle Scholar
  6. 6.
    D.F. Drake, Information’s Role in the Estimation of Chaotic Signals, Ph.D. dissertation (Georgia Institute of Technology, 1998)Google Scholar
  7. 7.
    S.T. Hayes, Chaos from linear systems: implications for communicating with chaos, and the nature of determinism and randomness. J. Phys. Conf. Ser. 23, 215 (2005)Google Scholar
  8. 8.
    Y. Hirata, K. Judd, Constructing dynamical systems with specified symbolic dynamics. Chaos 15, 033102 (2005)MathSciNetCrossRefGoogle Scholar
  9. 9.
    N.J. Corron, S.T. Hayes, S.D. Pethel, J.N. Blakely, Chaos without nonlinear dynamics. Phys. Rev. Lett. 97, 024101 (2006)Google Scholar
  10. 10.
    D.F. Drake, D.B. Williams, Linear, random representations of chaos. IEEE Trans. Signal Process. 55, 1379 (2007)MathSciNetCrossRefGoogle Scholar
  11. 11.
    N.J. Corron, S.T. Hayes, S.D. Pethel, J.N. Blakely, Synthesizing folded band chaos. Phys. Rev. E 75, 045201R (2007)Google Scholar
  12. 12.
    D.W. Hahs, N.J. Corron, J.N. Blakely, Synthesizing antipodal chaotic waveforms. J. Franklin Inst. 351, 2562 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    E. Ott, Chaos in Dynamical Systems (Cambridge University Press, Cambridge, 1993)Google Scholar
  14. 14.
    N.J. Corron, An exactly solvable chaotic differential equation. Dyn. Contin. Discret. Impuls. Syst. A 16, 777 (2009)Google Scholar
  15. 15.
    N.J. Corron, J.N. Blakely, M.T. Stahl, A matched filter for chaos. Chaos 20, 023123 (2010)Google Scholar
  16. 16.
    N.J. Corron, J.N. Blakely, Exact folded-band chaotic oscillator. Chaos 22, 023113 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    N.J. Corron, J.N. Blakely, Chaos in optimal communication waveforms. P. Roy. Soc. Lond. A 471, 20150222 (2015)MathSciNetCrossRefGoogle Scholar
  18. 18.
    A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, P. Davis, Fast physical random bit generation with chaotic semiconductor lasers. Nat. Photon. 2, 728 (2008)CrossRefGoogle Scholar
  19. 19.
    M.S. Willsey, K.M. Cuomo, A.V. Oppenheim, Selecting the Lorenz parameters for wideband radar waveform generation. Int. J. Bifurc. Chaos 21, 2539 (2011)CrossRefGoogle Scholar
  20. 20.
    H. Leung (ed.), Chaotic Signal Processing (SIAM, 2014)Google Scholar
  21. 21.
    M. Eisencraft, R. Attux, R. Suyama (eds.), Chaotic Signals in Digital Communications (CRC Press, Boca Raton, 2014)Google Scholar
  22. 22.
    R.L. Devaney, Introduction to Chaotic Dynamical Systems (Addison-Wesley, Boston, 1989)Google Scholar
  23. 23.
    J. Banks, J. Brooks, G. Cairns, G. Davis, P. Stacy, On Devaney’s definition of chaos. Am. Math. Mon. 99, 332–334 (1992)MathSciNetCrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019

Authors and Affiliations

  1. 1.Charles M. Bowden Laboratory, U.S. Army AMRDEC, Redstone ArsenalHuntsvilleUSA

Personalised recommendations