Advertisement

Classification and Analysis of Chimera States

  • Neelima GupteEmail author
  • Joydeep Singha
Conference paper
Part of the Understanding Complex Systems book series (UCS)

Abstract

We study the existence of different types of chimera states in a globally coupled sine circle map lattice with different strengths of intergroup and intragroup coupling. Some of the typical chimera phase configurations that can be observed in this system are aperiodic chimera states, splay chimera states and chimera states with spatiotemporally intermittent behaviour in the desynchronised group. These states are seen in different regions of the parameter space for three distinct kinds of initial conditions. We obtain the phase diagram containing the third type of chimera state, viz. the one with spatiotemporally intermittent regions, using complex order parameters. We construct an equivalent cellular automaton (CA) and reproduce the phase diagram in the region of interest by solving the mean field equation obtained for the CA.

References

  1. 1.
    Y. Kuramoto, D. Battogtokh, Nonlinear Phenom. Complex Syst. 5, 380 (2002)Google Scholar
  2. 2.
    D.M. Abrams, S.H. Strogatz, Phys. Rev. Lett. 93, 174102 (2004)CrossRefGoogle Scholar
  3. 3.
    D.M. Abrams, S.H. Strogatz, Int. J. Bifurc. Chaos 16(1), 21–37 (2006)CrossRefGoogle Scholar
  4. 4.
    D.M. Abrams, R. Mirollo, S.H. Strogatz, D.A. Wiley, Phys. Rev. Lett. 101, 084103 (2008)CrossRefGoogle Scholar
  5. 5.
    E.A. Martens, C.R. Laing, S.H. Strogatz, Phys. Rev. Lett. 104, 044101 (2010)CrossRefGoogle Scholar
  6. 6.
    O.E. Omel’chenko, Y.L. Maistrenko, P.A. Tass, Phys. Rev. Lett 100, 044105 (2008)CrossRefGoogle Scholar
  7. 7.
    H. Wang, X. Li, Phys. Rev. E 83, 066214 (2011)CrossRefGoogle Scholar
  8. 8.
    M.R. Tinsley, S. Nkomo, K. Showalter, Nat. Phys. 8, 662–665 (2012)CrossRefGoogle Scholar
  9. 9.
    S. Nkomo, M.R. Tinsley, K. Showalter, Phys. Rev. Lett. 110, 244102 (2013)CrossRefGoogle Scholar
  10. 10.
    J.F. Totz, J. Rode, M.R. Tinsley, K. Showalter, H. Engel, Nat. Phys. 14(3), 282–285 (2018)CrossRefGoogle Scholar
  11. 11.
    E.A. Martens, S. Thutupalli, A. Fourriére, O. Hallatscheck, PNAS 110(26), 10563–10567 (2013)CrossRefGoogle Scholar
  12. 12.
    C.R. Nayak, N. Gupte, AIP Conf. Proc. 1339, 172 (2011)CrossRefGoogle Scholar
  13. 13.
    J. Singha, N. Gupte, Phys. Rev. E 94, 052204 (2016)CrossRefGoogle Scholar
  14. 14.
    M.H. Jensen, P. Bak, T. Bohr, Phys. Rev. Lett. 50, 1637 (1983)CrossRefGoogle Scholar
  15. 15.
    E. Ott, Chaos in Dynamical Systems (Cambridge University Press, Cambridge, 1993)zbMATHGoogle Scholar
  16. 16.
    R. Mikkelsen, M. van Hecke, T. Bohr, Phys. Rev. E 67, 046207 (2003)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Indian Institute of Technology MadrasChennaiIndia

Personalised recommendations