Advertisement

Adventures in Stochastics

  • Derek AbbottEmail author
Conference paper
Part of the Understanding Complex Systems book series (UCS)

Abstract

This chapter describes my personal journey in the area of stochastic phenomena and how it has been impacted by Mike Shlesinger, to honor his 70th birthday for this Festschrift. I discuss my early explorations with Brownian ratchets and how this gave birth to the first paper on Parrondo’s paradox. I then describe how this led to the next part of my journey in the areas of quantum game theory, suprathreshold stochastic resonance, and stochastic mixtures. Finally, I wrap up with discussion of our latest Bayesian analysis showing that too many confirmatory observations can paradoxically result in reduced confidence in an outcome.

References

  1. 1.
    R. Clayton, J. Algar, The GEC Research Laboratories 1919–1984 (Peter Peregrinus Ltd., London, 1989)Google Scholar
  2. 2.
    K. Von Klitzing, G. Dorda, M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45(6), 494–497 (1980)Google Scholar
  3. 3.
    V. Anishchenko, A. Neiman (eds.), International Conference on Nonlinear Dynamics and Chaos in Physics Medicine and Biology (ICND-96), 8–14 July 1996, Saratov, Russia: Int. J. Bifurcat. Chaos 8(4) (1998)Google Scholar
  4. 4.
    C.R. Doering, L.B. Kiss, M.F. Schlesinger (eds.), Unsolved Problems of Noise (Szeged, Hungary, 1996; World Scientific, Singapore, 1997)Google Scholar
  5. 5.
    G.P. Harmer, D. Abbott, Losing strategies can win by Parrondo’s paradox. Nature (London) 402(6764), 864 (1999)Google Scholar
  6. 6.
    D. Abbott, B.R. Davis, J.M.R. Parrondo, The problem of detailed balance for the Feynman-Smoluchowski engine (FSE) and the multiple pawl paradox, in Proceedings of the Second International Conference Unsolved Problems of Noise and Fluctuations, (UPoN ’99), vol. 511, ed. by D. Abbott, L.B. Kish (Adelaide, Australia, 11–15 July 1999), pp. 213–218Google Scholar
  7. 7.
    G.P. Harmer, D. Abbott, P.G. Taylor, J.M.R. Parrondo, Parrondo’s paradoxical games and the discrete Brownian ratchet, in Proceedings of the Second International Conference Unsolved Problems of Noise and Fluctuations, (UPoN ’99), vol. 511, ed. by D. Abbott, L.B. Kish, (Adelaide, Australia, 11–15 July 1999), pp. 89–200Google Scholar
  8. 8.
    J. Almeida, D. Peralta-Salas, M. Romera, Can two choatic systems give rise to order? Phys. D 200, 124–132 (2005)Google Scholar
  9. 9.
    F.A. Reed, Two-locus epistasis with sexually antagonistic selection: a genetic Parrondo’s paradox. Genetics 176, 1923–1929 (2007)Google Scholar
  10. 10.
    A.P. Flitney, D. Abbott, An introduction to quantum game theory. Fluct. Noise Lett. 2(4), R175–R188 (2002)Google Scholar
  11. 11.
    A.P. Flitney, J. Ng, D. Abbott, Quantum Parrondo’s games. Phys. A 314, 35–42 (2002)Google Scholar
  12. 12.
    J. Rajendran, C. Benjamin, Playing a true Parrondo’s game with a three-state coin on a quantum walk. Europhys. Lett. 122(4), 40004 (2018)Google Scholar
  13. 13.
    G. Smith, J. Yard, Quantum communication with zero-capacity channels. Science 321(5897), 1812–1815 (2008)Google Scholar
  14. 14.
    M.F. Barnsley, Fractals Everywhere (Springer, New York, 1988)Google Scholar
  15. 15.
    D. Abbott, Asymmetry and disorder: a decade of Parrondo’s paradox. Fluct. Noise Lett 9(1), 129–156 (2010)Google Scholar
  16. 16.
    D.G. Luenberger, Investment Science (Oxford University Press, Oxford, 1997)Google Scholar
  17. 17.
    A. Allison, C.E.M. Pearce, D. Abbott, Finding keywords amongst noise: automatic text classification without parsing. in Proceedings of the SPIE Noise and Stochastics in Complex Systems and Finance, Florence, vol. 6601 (Italy, 2007), pp. 660113Google Scholar
  18. 18.
    L.J. Gunn, F. Chapeau-Blondeau, M.D. McDonnell, B.R. Davis, A. Allison, D. Abbott, Too good to be true: when overwhelming evidence fails to convince. Proc. R. Soc. Lond. A 472, 20150748 (2016)Google Scholar
  19. 19.
    A. Allison, D. Abbott, Stochastic resonance in a Brownian ratchet. Fluct. Noise Lett. 1(4), L239–L244 (2001)Google Scholar
  20. 20.
    M.D. McDonnell, N.G. Stocks, C.E.M. Pearce, D. Abbott, Stochastic Resonance (Cambridge University Press, Cambridge, 2008)Google Scholar
  21. 21.
    N.G. Stocks, Suprathreshold stochastic resonance. Stochaos 1999(502), 415–421 (2000) (Ambleside)Google Scholar
  22. 22.
    L.J. Gunn, F. Chapeau-Blondeau, A. Allison, D. Abbott, Towards an information-theoretic model of the Allison mixture stochastic process. J. Stat. Mech. 5, 054041 (2016)Google Scholar
  23. 23.
    M.D. McDonnell, N.G. Stocks, C.E.M. Pearce, D. Abbott, Optimal information transmission in nonlinear arrays through suprathreshold stochastic resonance. Phys. Lett. A 352(3), 183–189 (2006)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Electrical & Electronic EngineeringUniversity of AdelaideAdelaideAustralia

Personalised recommendations